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Networks of interconnected materials permeate throughout nature, biology, and technology due to
exceptional mechanical performance. Despite the importance of failure resistance in network design and
utility, no existing physical model effectively links strand mechanics and connectivity to predict bulk
fracture. Here, we reveal a scaling law that bridges these levels to predict the intrinsic fracture energy of
diverse stretchable networks. Simulations and experiments demonstrate its remarkable applicability to a
breadth of strand constitutive behaviors, topologies, dimensionalities, and length scales. We show that local
strand rupture and nonlocal energy release contribute synergistically to the measured intrinsic fracture
energy in networks. These effects coordinate such that the intrinsic fracture energy scales independent
of the energy to rupture a strand; it instead depends on the strand rupture force, breaking length, and
connectivity. Our scaling law establishes a physical basis for fracture of homogeneous networks with
uniform strand mechanics and lattice connectivity throughout. The scaling also extends generally for
fabricating tough materials from homogeneous networks across multiple length scales.

DOI: 10.1103/PhysRevX.15.011002 Subject Areas: Mechanics, Metamaterials, Soft Matter

I. INTRODUCTION

Networks ubiquitously underpin the composition of
materials throughout nature and daily life, spanning from
nanoscale polymers and biological materials [1–7] through
microscale architected materials [8–12], synthetic tissues
[13,14], and structural networks [15–17] to macroscale
fabrics and meshes [18]. The core of designing and
selecting network materials that endure routine stresses
in nature, technology, and daily life lies in circumventing
mechanical fracture [19–22]. Intrinsic fracture energy
(Γ0)—the lowest energy required to propagate a crack
per unit of created surface area—is the key property that
characterizes a material’s fatigue resistance [23,24].
Despite its importance, no quantitative model accurately

predicts the intrinsic fracture energy of networks across
multiple length scales from the mechanical behavior and
connectivity of their constituents.
A recent study discovered that nonlocal phenomena

contribute to intrinsic fracture energy in polymerlike net-
works with strands exhibiting pronounced strain-stiffening
profiles [25]. However, many common or architected
network materials contain stretchable strands with different
constitutive laws, including linear, bilinear, neo-Hookean,
etc. Here, we report a new scaling law for the intrinsic
fracture energy of diverse stretchable networks including
but not limited to polymerlike networks through combined
simulation and experiments:

Γ0=M ∝ ffLf; ð1Þ

where Γ0 is the intrinsic fracture energy, M is the areal
density of strands, ff is the strand breaking force, and Lf is
the stretched strand length at the breaking point. We show
that this result applies across multiple length scales ranging
from 1 nm to 1 m for networks comprised of stretchable
elastic strands with varying single-strand force-length
constitutive behaviors ranging from linear to highly non-
linear relations. We similarly demonstrate the scaling law
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is applicable to a breadth of two- and three-dimensional
network architectures, including triangular, square, hex-
agonal, diamond cubic, body-centered cubic, and cubic
lattices. Experiments ranging from nanoscale polymer
networks to macroscopic architected materials paired with
simulations of networks across length scales collectively
validate this scaling law.

II. ASSEMBLING DIVERSE NETWORKS

We connect the intrinsic fracture energy of networks to
the constitutive behavior of individual strands by directly
assembling and testing diverse networks. Mechanically
identical strands with the same initial length L0, terminal
length Lf, and rupture force ff comprise each network [see
Fig. 1(a)]. To describe strands with force-length behaviors
varying from linear to nonlinear, we adopt the modified
freely jointed chain (m-FJC) model, which relates the force
f and length L as

L
Lx

¼
�
coth

�
f
K1

�
−
K1

f

��
1þ f

K2

�
; ð2Þ

where the two moduli K1 and K2 describe the stiffnesses of
the force-length curve before and after a crossover length
Lx [26–28]. We then iteratively assemble strands—each
with identical elastic constitutive behavior governed by the
m-FJC model—into homogeneous networks for bulk
mechanical testing. Homogeneous cases refer to networks
with uniform strand mechanics and lattice connectivity
throughout. Inhomogeneous networks contain irregularities
such as dispersity of strand lengths, mechanical variability
between strands, or topological inconsistency through
defects like dangling ends. Prior works introduce lattice
models [29] to simulate details of brittle fracture [15,30]
and mesoscale or quasicontinuum network models to probe
aspects of elastomeric fracture [31–35]. The numerical
framework simulates a pure shear fracture test to evaluate
the critical energy release rate Gc necessary to propagate an
edge crack in a notched sample. For networks with elastic
strands, the intrinsic fracture energy Γ0 matches Gc. The
simulation first uniaxially loads a notched sample in pure
shear from its undeformed height h0 to the critical height hc
that initiates crack growth. The condition for crack ini-
tiation matches that of crack propagation in these simu-
lations, since all strands are elastic. The simulation
subsequently loads a pristine sample from h0 past hc,
recording the nominal stress s as a function of stretched
height h. It finally computes Γ0 ¼

R hc
h0

sdh, an inherent
property of elastic networks with a sufficient number of
repeating layers (see details in the Supplemental
Material [36]). To ensure the convergence of Γ0, we
simulate amply large networks with more than 1000
vertical layers of strands. The goal of numerical simulations
is to connect the measured network-level intrinsic fracture

energy to the preset strand-level force-length constitutive
behavior. To achieve that, we systematically tune the strand
failure lengths Lf from 1 nm to 1 m and rupture forces ff
from 1 nN to 1 N. While we acknowledge some models for
polymers postulate strand softening effects before a strand
breaks [27,37], we consider abrupt strand scission [38],
as this is supported by the single-molecule force spectros-
copy of synthetic polymers [39] and proteins [40].
Similarly, we vary the ratio of K2=K1 as a nonlinearity
parameter to match a breadth of natural and synthetic
networks with behavior ranging from linear (K2=K1 ≈ 1)
to highly nonlinear (K2=K1 ≈ 104) [see Fig. 1(c)]. We
intentionally limit our focus to stretchable networks
where the breaking stretch of each strand is greater than
five (i.e., Lf > 5L0) to minimize geometric artifacts (see
Supplemental Material [36] for a detailed explanation).

III. SCALING FOR NETWORK INTRINSIC
FRACTURE ENERGY

We find that all simulation results—across strand
lengths, failure forces, and nonlinearities—follow a scaling
law: Γ0=M ∝ ffLf. In Fig. 1(d), we plot simulated intrinsic
fracture energy per strand Γ0=M against the product of
failure force and length of the composite strands ffLf and
find that all data points collapse along a single straight line:
Γ0=M ¼ αffLf, where α is a fitting parameter depending
on the specific lattice type. While the scaling law holds for
arbitrary strand lengths, strand breaking forces, nonlinear-
ity parameters, and network orientations (see Supplemental
Material [36] for details), the lattice topology governs the
prefactor α. The simulation yields α ¼ 0.73 for triangular
lattices [Fig. 1(d)], α ¼ 1.46 for square lattices [top in
Fig. 1(e)], and α ¼ 2.54 for hexagonal lattices [bottom in
Fig. 1(e)].
Additional simulations reveal the generality of this

scaling law to three-dimensional networks. We assemble
diamond, body-centered cubic (bcc), and cubic lattices
[see Figs. 1(f)–1(h)] from strands with the same breadth of
behaviors. The scaling law accurately predicts intrinsic
fracture energy for each three-dimensional topology. The
diamond, bcc, and cubic lattices give α ¼ 1.07, α ¼ 1.74,
and α ¼ 1.50, respectively [see Figs. 1(f)–1(h)].

IV. PHYSICAL EXPLANATION

We next seek to understand the origins of the scaling law
Γ0=M ∝ ffLf by analyzing the fracture process of the
bridging strand (i.e., the first breaking strand along the
crack plane) and examining its energetic contributions.
While loading a notched network to fracture [Figs. 2(a)
and 2(c)], the bridging strand at the crack tip stretches
from L0 to Lf and stores elastic energy [Ustrand, Figs. 2(b)
and 2(d)]. However, instantaneously following bridging
strand rupture, the network remains unbalanced and must
release additional energy to reach a new equilibrium. In real
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networks, this additional energy can be dissipated by
damping mechanisms such as viscous drag or friction.
To quantitatively measure each energetic contribution, we
first load a notched sample from the reference state until the
bridging strand reaches Lf [Fig. 2(a)(i) and 2(a)(ii)] and
track the force-length response of that strand [Figs. 2(b)(i)
and 2(b)(ii)]. Integration of this relation supplies the
energetic contribution of a single strand Ustrand. Upon

abrupt rupture, we fix the boundary conditions and
replace the bridging strand with a pair of opposing artificial
forces between the two end points. We first prescribe the
length between these end points to Lf and calculate the
reaction force required to preserve equilibrium. We then
quasistatically increase the distance between the end points
[Fig. 2(a)(ii)–(iv)] and record this force [Fig. 2(b)(ii)–(iv)]
until its magnitude reaches zero, marking the new

FIG. 1. Scaling law for intrinsic fracture energy of diverse stretchable networks. (a) Collections of identical strands are assembled into
networks to measure the intrinsic fracture energy Γ0. The crack tip of a loaded, notched specimen depicts how strand lengths (L, colored
by stored energy) increase during loading as the bridging strand approaches its failure length (Lf). (b) The nonlinearity parameter
(K2=K1) describes the strain-stiffening constitutive behavior of strands by relating the moduli of the first (K1) and second regimes (K2)
of the force-length curve during loading to the failure force (ff) and length (Lf). (c) Tuning the nonlinearity parameter
(K2=K1 ∈ ½1; 104�), stiffness crossover length (Lx), failure length (Lf ∈ ½1 nm; 1 m�), and rupture force (ff ∈ ½1 nN; 1 N�) of single
strands provides a breadth of candidates for network assembly and fracture testing. (d) Intrinsic fracture energy (normalized by the areal
strand density M) scales linearly with ff and Lf of single strands across all scales in a two-dimensional triangular lattice (loop size
nloop ¼ 3), giving a prefactor α ¼ 0.73. (e) The scaling law holds for two-dimensional lattices with square (nloop ¼ 4) and hexagonal
(nloop ¼ 6) lattices with prefactors α ¼ 1.46 and 2.54, respectively. Three-dimensional networks with (f) diamond cubic, (g) body-
centered cubic, and (h) cubic unit cells follow the scaling law with α ¼ 1.07, 1.74, and 1.50, respectively.
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unperturbed network equilibrium. Integration of this
relaxation response yields the energy released by the
network continuum. Together, the sum of both responses
[Fig. 2(b)(i)–(iv)] gives the critical energy release rate Gc
supplied by the loading condition, which aligns with Γ0 in
elastic networks studied here. This conceptually parallels
the crack closure integral from linear elastic fracture
mechanics, which enables evaluation of energy release
ratesG from stress intensity factors [41–43]. Therefore, this
numerical result quantitatively describes the energetic
contributions of the single strand (red region) and network
continuum (blue region) to the measured intrinsic fracture
energy (see Appendix B 3 for simulation details).
During postfracture relaxation, the network exerts reac-

tion forces ∝ ff across a distance ∝ Lf on the broken
strand ends. For networks with linear strands [Fig. 2(a)], the
bridging strand and nonlocal contributions are on the same
order of magnitude [Fig. 2(b), red region], so Γ0=M ∝
Ustrand still provides a reasonable approximation. However,
this does not hold when applied to networks with highly
nonlinear strands [Fig. 2(c)]; the single-strand contribution
constitutes only a small fraction of the total released energy

[Fig. 2(d)]. Instead, the released energy from the network
continuum dominates, which is consistent with findings
from our recent work [25]. Also, in networks with
increasingly nonlinear strands, more strands are highly
stretched, which deconcentrates stress from the crack tip.
Therefore, the total measured intrinsic fracture energy of
the network always scales with ffLf.
Next, we investigate how different types of networks

affect the fitting parameter α in the scaling law. The key
topological parameter describing a lattice during fracture is
its loop size: the number of strands within the shortest closed
path; our analysis includes triangular (loop size, nloop ¼ 3),
square (nloop ¼ 4), and hexagonal (nloop ¼ 6) lattices.
As shown in Fig. 2(e), the loop connected to the bridging

strand in the notched sample opens when the strand breaks
at Lf, stretching and aligning the strands within that loop.
The broken strand ends in triangular, square, and hexagonal
lattices migrate in this process from a distance of Lf to
about 2Lf, 3Lf, and 5Lf, respectively. The relaxation
length, defined as the difference between the fully extended
and initial loop lengths [ðnloop − 1ÞLf and Lf, respec-
tively], generally yields ðnloop − 2ÞLf.

FIG. 2. Physical explanation of the scaling for intrinsic fracture energy of stretchable networks. (a) A case study simulates a notched
triangular network of strands with linear mechanics (K2=K1 ≈ 1) and loads from the undeformed state (i) until bridging strand fracture
and (ii) then quasistatically reduces artificial forces on the ends of the broken strand (iii) until the network reaches equilibrium (iv).
(b) The integration of the tracked strand loading force (red) and nonlocal energy release (blue) as a function of length between strand
ends explains the critical energy release rate Gc to break the bridging strand. This quantity aligns with the measured Γ0=M and scales
with ffLf in elastic networks. (c) A second case study repeats the procedure for a network of strands with high nonlinearity
(K2=K1 ≈ 104) but the same ff and Lf . (d) While the single-strand energy (Ustrand, red) is much smaller than ffLf , the total integration
of the single strand and nonlocal contributions counterbalance and scale with ffLf. (e) Simulation results depict extension from
triangular (nloop ¼ 3) to square (nloop ¼ 4) and hexagonal (nloop ¼ 6) lattices for strands with high nonlinearity (K2=K1 ≈ 104). The
measured α parameter scales with the relaxation length or difference between ðnloop − 1ÞLf and Lf [i.e., α ∼ ðnloop − 2Þ]. All results are
numerically derived from simulations. (f) Measured Γ0=M normalized by ffLf, which gives α, is plotted against K2=K1 across lattices.
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This result establishes a topological interpretation for the
parameter α as α ∝ ðnloop − 2Þ, providing a more explicit
form of the scaling law:

Γ0=M ∝ ðnloop − 2ÞffLf: ð3Þ

To distinguish simulation results across topologies and
strand nonlinearities, we normalize Γ0=M by the scaling
law ffLf, which gives α, and plot the results againstK2=K1

[Fig. 2(f)]. Loop size directly affects α, which is consistent
with our model. While loop size becomes more complex in
three-dimensional networks due to structural intricacies
(i.e., strands with multiple adjoining loops, etc.), effective
loop sizes can be found which match this result.

V. EXPERIMENTAL VERIFICATION

We illustrate the versatility and consistency of this
scaling through experimental validation across a spectrum
of networks, ranging from architected materials composed
of strands at the millimeter level to polymers composed of
strands at the nanometer level. For macroscale architected
materials, we fabricate two- and three-dimensional net-
works from folded and spring-shaped strands, respectively,
with various strain-stiffening K2=K1 behaviors by control-
ling the transition between compliant unfolding (K1)
and stiffer material stretching (K2) during loading. Two-
dimensional triangular lattices of repeating strands are
laser cut (model: Epilog Laser Fusion Maker 12) from
polyester (0.00100 thick) and polyacetal (0.00300 and
0.00500 thick) films (McMaster-Carr) [Fig. 3(a)]. Three-
dimensional diamond lattices of repeating strands are
modeled in a commercial 3D modeling software
(SolidWorks, Dassault Systems) and 3D printed (Inkbit
Vista, Inkbit) using a thiol-ene polyurethane elastomer
(TEPU30A, Inkbit) [44] [Fig. 3(b)]. Intrinsic fracture
energy is calculated after loading an unnotched specimen
in pure shear to obtain the force-stretch behavior and
extending notched specimens in pure shear to the critical
height hc where bridging strands reach Lf. For nanoscale
polymer networks, we collect intrinsic fracture energy
measurements from across the literature [45–47] for
tetra-poly(ethylene glycol) (PEG) hydrogels, since they
possess relatively homogeneous networks [48]. Degree of
polymerization N between cross-links tunes the failure
length of polymer strands (Lf ∼ N) [45], while mechano-
phores embedded in the backbone tune the rupture force of
strands ff [47]. Representative force-length relations para-
metrized from experiments by the m-FJC model for
polymer network strands are plotted in the left column
in Fig. 3(c). The parameters and detailed calculations can
be found in the Supplemental Material [36] (Sec. S2.2).
These experimental networks cover a vast spectrum of

single-strand nonlinearity parameters (K2=K1 from 20 to
1.8 × 104), breaking forces (ff from 1.3 nN to 1.7 N), and

breaking lengths (Lf from 47.4 nm to 25.1 mm). Across
this range, the proposed scaling law predicts the exper-
imentally measured polymer [Fig. 4(a)] and architected
[Fig. 4(b)] network intrinsic fracture energy. Overall,
experimental agreement of nanoscale polymer networks
and macroscopic architected materials to the scaling law
synergistically promote its applicability in predicting
diverse network fracture [Fig. 4(c)].

FIG. 3. Experimental networks for fracture tests. (a) Macroscale
two-dimensional architected triangular networks, (b) macroscale
three-dimensional architected diamond-lattice networks, and
(c) nanoscale three-dimensional poly(ethylene glycol) end-linked
polymer networks [45–47] are fabricated to measure intrinsic
fracture energy Γ0. The left column displays the force-length
relations for single strands during mechanical loading from the
undeformed strand length L0 to the fracture length Lf and
fracture force ff. Failure points of various strand designs are
denoted by black markers. The crossover length Lx and non-
linearity parameter K2=K1 can be calculated or fit to describe
these behaviors via the m-FJC model. The center column displays
the topologies and length scales of repeating units within bulk
samples and the predicted scaling parameter α from simulations.
The rightmost images display notched samples loaded to the
critical height hc during the pure shear fracture test. Unnotched
samples are loaded past hc to measure Γ0 for validation of the
scaling law.
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VI. DISCUSSION

The scaling law presented here highlights that the
intrinsic fracture energy of a breadth of network materials
directly depends on loop size and fracture force. First, strand
lengths (via Lf) and connectivity (via α) describe the loop
size in the network. Bridging strand rupture propagates a
crack by unfolding the surrounding loop of strands. The
extent to which the loop opens dictates the energy release
from the continuum network. This finding suggests that
networks designed with longer strands or larger topological
loops can result in increased toughness per broken chain.
Second, the dependence of the scaling law on strand fracture
force underscores that the effect of strand constitutive
behavior is minor. Given a constant fracture force for
topologically equivalent networks, measurements indicate
that changing the shape of the force-length loading profile to
reach the strand rupture point does not significantly vary
the intrinsic fracture energy. This result deviates from the

long-standing notion that intrinsic fracture energy scales
with Ustrand. It also surprisingly unifies fracture in networks
expressing different failure physics. Energy release is local
to the crack tip in linear networks yet nonlocal in nonlinear
networks; nonetheless, both types obey the scaling law.
The topological parameter α approximated by loop size

aligns well with experimental outcomes. The PEG polymer
network results match with α between 1 and 3 and scale
appropriately [Fig. 4(a)]. The α value of 0.73 from triangular
lattice simulations shows strong agreement with the experi-
ments for two-dimensional architected triangular networks;
similarly, the value of 1.07 from diamond lattice simulations
matches well with experiments for three-dimensional archi-
tected diamond networks [Fig. 4(b)]. While networks con-
taining heterogeneities require further exploration, these
results highlight the relevance of the scaling law to latticelike
systems. The relatively homogeneous tetra-PEG gel case
presented here suggests that this scaling law could poten-
tially apply to the molecular level.

(a)

(c)

(b)

FIG. 4. Intrinsic fracture energy in experimental networks. Experiments validate the scaling law in predicting the measured intrinsic
fracture energies of networks ranging from (a) nanoscale three-dimensional PEG polymer networks from the literature to (b) macroscale
two- and three-dimensional architected networks with various single-strand behaviors. (c) Experimental results show the applicability of
the scaling law to a vast range of materials across scales, including polymer networks, biological networks (image courtesy of Howard
Vindin), architected materials, textiles (image courtesy of E. P. Vicenzi from Smithsonian’s Museum Conservation Institute and National
Institute of Standards and Technology), spider webs (image courtesy of Chen-Pan Liao), and nets (image courtesy of Nikodem Nijaki).
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The findings shared in this work parallel a separate
phenomenon studied in linear elastic fracture mechanics
called lattice trapping [49]. Lattice models implementing
atomistic force laws to approximate fracture of atomically
bonded materials expose a mismatch in the measured
critical energy release rate for crack propagation and the
surface energy dissipated by breaking bonds [50]. This
mismatch occurs because the lattice structure exhibits an
energy barrier which traps the network in a local energy
minimum even though the fractured state is the global
energy minimum. The nonlocal contribution to intrinsic
fracture energy parallels this lattice trapping effect. For
real crystalline materials, this energy barrier typically
remains small enough such that the combination of
thermal energy, dislocations, grain structure, etc., causes
the crack to overcome the barrier to fracture within relevant
timescales [51,52]. For networks described here, this
energy barrier can become extremely steep. We contend
that the crack would likely not overcome this barrier on
relevant timescales due to thermal fluctuations or structural
defects. The true impact of energy fluctuations on lattice
trapping across all networks and length scales remains
an open question. We propose that the full local and
nonlocal effects must be considered together to capture the
intrinsic fracture energy measured in networks studied here.
Interestingly, the model developed here can reasonably

account for the fracture of unentangled, semidilute polymer
gels. Unlike architected materials, polymer networks are
more complex and inherently involve polydispersity. The
chain length between cross-links, the size of topological
loops, and the strand scission force all follow distributions.
Despite this complexity, the experimental data can be
semiquantitatively captured with the prefactor α, which
is proportional to the size of topological loops. How
polydispersity influences the developed model, however,
still requires further investigation.
Networks manifest in nature due to exceptional resis-

tance to failure under harsh loading conditions. Designing
materials that mechanistically resist fracture requires an
understanding of the hierarchical connection between
strand mechanics, network connectivity, and macroscopic
properties. Here, we reveal a simple scaling that unifies
the fracture of networks across many length scales,
strand mechanical nonlinearities, and lattice topologies.
Advancing a crack through a network requires local energy
dissipation through breaking the bridging strand and non-
local energy release through opening the adjoining loop to
rebalance. When strands exhibit nearly linear force-length
relationships, energy dissipation is local to the crack tip.
When strands exhibit highly nonlinear relationships, the
nonlocal energy release can far exceed the elastic energy
contained within the bridging strand. In each case, the
physical process counterintuitively gives a measured intrin-
sic fracture energy that scales with geometry through nloop

and single-strand mechanics through ffLf instead of
Ustrand. These findings provide a foundational mechanism
for interpreting and designing networks as tough materials.
For instance, nanoscale polymer strands garner toughness
in natural, biological, and synthetic networks by synergisti-
cally achieving high deformations and rupture forces.
Similarly, animals such as bees and spiders leverage
connectivity to resist honeycomb and web fracture. This
scaling law not only elucidates the beauty of existing
network structures, but informs future design of lattices in
metamaterials, textiles, and beyond.
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APPENDIX A: COMPUTATIONAL METHODS

1. Mathematical model for numerical simulation

We model networks as systems of connected nonlinear
elastic springswith constitutive forcef and lengthL relations
characterized by the modified freely jointed chain model in
Eq. (2). This formula yields the constitutive law we apply to
each nonlinear spring in the simulation. To capture strand
rupture, a breaking force ff and length Lf are prescribed to
the spring.Wevary the range offf from 1 nN to 1N,Lf from
1 nm to 1 m, and K2=K1 from 1 to 3.0 × 104 to broadly
describe networks across scales. High nonlinearity param-
eters capture the extreme strain-stiffening behaviormeasured
using single molecule force spectroscopy for common
polymers such as poly(acrylic acid) [53], poly(vinyl
alcohol) [54], polyisoprene [55], poly(acryl amide) and
poly(N-isopropyl acrylamide) [56], poly(dimethylacryla-
mide) and poly(diethylacrylamide) [57], and poly(ethylene
glycol), whose nonlinearity parameter reaches upward of
1.8 × 104 [58]. The breaking lengthLf is notably selected in
simulations to be at least 5 times the initial length (i.e.,
Lf > 5L0) to limit geometric artifacts.
We describe the lattice deformation of general three-

dimensional networks consisting of n nodes and e edges
through their coordinates ðxi; yi; ziÞ, where i ¼ 1;…; n.
Two matrices store the node coordinates and their respec-
tive connectivities in MATLAB. The total system energy at
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each loading step is expressed as the sum of the elastic
energy stored in each edge or spring as

Utotal ¼
X
i;j

Z
λij

1

fðλ0Þdλ0; ðA1Þ

where λij is the stretch of the edge connecting node iwith j:

λij ¼ r−10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi − xjÞ2 þ ðyi − yjÞ2 þ ðzi − zjÞ2

q
: ðA2Þ

Minimizing Utotal numerically provides the coordinates
of each node ðxi; yi; ziÞ as solved by equating

∂Utotal

∂xi
¼ 0;

∂Utotal

∂yi
¼ 0;

∂Utotal

∂zi
¼ 0; ðA3Þ

using Newton’s method in MATLAB. Additionally, a broken
edge between nodes i and j is detected when λij > λf and
removed by deleting the corresponding entries of the
connectivity matrices.
Clamped boundary conditions are prescribed in the

simulation to the top and bottom surface to quasistatically
stretch the sample from the initial height h0 to a final height
h in the y direction. The displacement boundary condition
is applied in the simulation on the top and bottom nodes as

yi ¼ h; for i∈ top nodes;

yi ¼ y0i ; for i∈ bottom nodes; ðA4Þ
where y0i denotes the initial y position of the ith nodes.
The sample width w0 in the x direction is set to twice the

height h0 in all simulations as w0 ¼ 2h0. We fix the x
displacement on the left and right boundaries to enforce a
pure shear loading condition and limit edge effects via

xi ¼ x0i ; for i∈ left nodes;

xi ¼ x0i ; for i∈ right nodes; ðA5Þ
where x0i denotes the initial x position of the ith nodes.
Equations (A3)–(A5) form a boundary value problem that
can be solved numerically.

2. Quasistatic solver

The node coordinates ðxi; yi; ziÞ fully describe the state
of the system, so all variables can be rewritten as vectors:

X ¼ ½x1; y1; z1; x2; y2; z2;…; xn; yn; zn�T: ðA6Þ
The 3n by 1 vector X contains all necessary information to
describe the lattice deformation. The nonlinear system of
equations described in Eqs. (A3)–(A5) is solved to obtain
X and can be written generally as

FðXÞ ¼ 0: ðA7Þ
Note that the equation above presents the same governing
equations depicted in Eq. (A3).

The solver implements Newton’s method to solve the
governing equation [Eq. (A7)]. The generalized Newton’s
method is to find a root of a functional F defined in a
Banach space. In this case, the formulation is

Xlþ1 ¼ Xl − ½JðXlÞ�−1FðXlÞ; ðA8Þ

where JðXlÞ is the Jacobian matrix of the function F at Xl
and l is the iteration number. Instead of computing the
inverse of this matrix, one can save time by solving the
following system of linear equations:

JðXlÞðXlþ1 −XlÞ ¼ −FðXlÞ: ðA9Þ

Starting with an initial guess X0, the next approximate
solution Xl is obtained iteratively. The method ends
when kXlþ1 −Xlk < δ, where δ is a defined accuracy
requirement.
The quasistatic simulation divides the loading process

into P steps to gradually stretch the network. It obtains the
system stateXðpÞ by solving Eq. (A7), where p ¼ 1;…; P,
at each step. To accelerate convergence of Newton’s
method, the solution of the current step provides the initial
guess for the upcoming step. Upon breaking a bridging
strand at step p during loading to measure Γ0, the solver
maintains the boundary conditions (i.e., h ¼ hc), searches
for a new equilibrium state, and checks for strand fracture
before continuing to pþ 1.

3. Postrupture artificial force decay simulation

We adapt the simulation protocol to explore the physical
explanation for the scaling law by tracking and relaxing the
nodes connecting the first bridging strand following rup-
ture. A notched network is first loaded to the critical height
hc where the first bridging strand breaks. The bulk
boundary conditions are fixed for the remainder of the
simulation. Instead of breaking the bridging strand and
equilibrating the system, the strand is replaced by an
approximately infinitely stiff spring (Kspring ≫ K2 ≥ K1).
At the initial step, the simulation fixes the length of the
stiff spring to match the length of the broken strand
(Lspring ¼ Lf), obtains the next system state XðPþ1Þ by
solving Eq. (A7), and stores the pair of opposing artificial
forces required to preserve equilibrium on each node. For
the remaining steps, the algorithm incrementally lengthens
the spring, equilibrates the system state, and stores the
new spring force readout. The iterative procedure con-
cludes once the measured spring force reaches a small
tolerance of zero or the spring reaches a predetermined
terminal length.

4. Coarse-graining simulation procedure

We simulate networks on the order of thousands of layers
to ensure convergence of samples with high nonlinearity
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parameters (see Supplemental Material [36] for details on
convergence). Networks are coarse-grained far from the
crack tip for computational efficiency (see Supplemental
Material [36] for a case study on the computational limits).
The coarse-grained method reconstructs large networks
with drastically fewer degrees of freedom (DOFs). Near
fracture of the bridging strand, the network is most
inhomogeneous near the crack tip but becomes more
homogeneous with increasing distance. Since strands far
from the crack tip do not substantially vary in their local
neighborhoods, a coarse lattice can equivalently describe
their continuum-level mechanical response. For instance, a
two-dimensional triangular network with h0 ¼ 100 layers
and w0 ¼ 200 layers can be reconstructed with incremental
levels of coarse lattices moving radially outward from the
crack tip (see the Supplemental Material [36] figure on
coarse-graining). The relative stiffness of coarse-grained
strands is prescribed proportionally to length (represented
by line thicknesses in the Supplemental Material [36] figure
on coarse-graining) to ensure the coarse-grained neighbor-
hoods maintain the same bulk mechanical performance as
the full network. In notched samples, levels incrementally
coarsen with increasing distance in the x and y directions
from the undeformed crack tip. A full two-dimensional
network possessing 23 057 nodes can, therefore, be coarse-
grained with this scheme to contain only 1047 nodes (see
Supplemental Material [36] figure on coarse-graining).
Direct comparisons indicate that the coarse-grained model
accurately predicts the critical stretch at which the first
strand breaks (see Supplemental Material [36] for a detailed
comparison). While the coarse-grained model cannot accu-
rately capture the full fracture process, it yields an accurate
measure of hc in the pure shear fracture test.
The coarse-grained triangular networks used for all

simulations contain a size of h0 ¼ 4000 layers by w0 ¼
8000 layers, with a total of 44 847 nodes and 89 694 DOFs
(see the Supplemental Material [36] figure on coarse-
grained sample size). Note that an equivalent full network
requires about 40 million nodes; the coarse-graining
scheme decreases the required number by 99.9%. Each
iteration of Newton’s method—which includes assembling
the Jacobian matrix and solving Eq. (A8)—typically costs a
few seconds. The full fracture simulation of a two-
dimensional h0 ¼ 4000 layer network typically takes under
20 min to complete on a standard desktop with Intel Core
i9- 12900K.

APPENDIX B: EXPERIMENTAL METHODS

1. Fabrication of two-dimensional architected networks

Two-dimensional networks are fabricated by laser cut-
ting polyester (12” × 12” × 0.001”) and polyacetal
(12” × 12” × 0.003”; 0.005”) sheets (McMaster-Carr part
numbers 7594T11 and 5742T11) with a laser cutter (Fusion
Maker 12, Epilog Laser). The triangular network strand

pattern is designed (CorelDRAW, Corel Corporation) with
28 vertical layers of repeating units with 60 strands per
layer. Each strand has a “zigzag” structure that unfolds to
provide an initial compliant bending regime then deforms
the material to provide a final stiff stretching regime [59].
This large discrepancy between stiffness enables high
values and tunability of the nonlinearity parameter
K2=K1 from the m-FJC model. The distance between
the laser head and the acetal film is calibrated before
cutting to ensure sharp focus. Cutting parameters are
selected to be 10% for laser power, 10% for frequency,
and 100% for speed. Four identical samples in total are cut
to perform each measurement of energy release rate. For
each sample, four 1=16” acrylic sheets are cut and glued on
either side of an uncut portion at the top and bottom of the
sample to act as a rigid boundary, which is clamped onto
the mechanical testing machine.

2. Fabrication of three-dimensional
architected networks

For three-dimensional networks, single spring-shaped
strands are designed and parametrized using commercial
3D modeling software (Solidworks, Dassault Systems).
Strands are assembled spatially into a diamond cubic unit
cell and joined at strand ends via spherical nodes. Unit cells
comprised of 16 strands are patterned into a 16 × 16 × 8
array. The resulting lattice contains 2048 unit cells and
32 768 single strands. Rectangular plates are joined to the
top and bottom faces of the network. The assembled
components are joined and resized such that single strands
are 5 mm in length, giving a bulk height of 186 mm for the
16 unit cells. The resulting network is saved as a stereo-
lithography file, exported, and 3D printed on a vision
controlled jetting system (Inkbit Vista, Inkbit) using a thiol-
ene polyurethane elastomer (TEPU30A, Inkbit). For each
sample, four acrylic sheets are cut and glued to the top and
bottom plates to form a rigid boundary with a vertical
protrusion to be clamped onto the testing machine.

3. Experimental measurement of two-dimensional
architected networks

Pure shear fracture tests are performed on two-
dimensional networks using a ZwickiLine materials testing
machine (2.5 kN load cell, Zwick/Roell). To measure
fracture energy Γ0, a uniaxial extension test is first
performed on a pristine sample at a constant loading rate
of 100 mm=min. Using the experimentally obtained uni-
axial response, we inversely identify the effective force-
length curve for each strand such that the simulation results
match experiments. We first simulate the uniaxial loading
response for an identical sample geometry and topology,
with strands exhibiting a J-shaped force-length response
estimated to mimic the expected behavior for the ribbon-
shaped strands. We then tune the parameters of the m-FJC
model and repeat the loading scheme until the simulation
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results for an unnotched network match experiments. To
validate this approach, five individual 0.005” polyacetal
strands are laser cut and tested uniaxially. The average
force-length curve measured experimentally matches the
profile obtained by the inverse method. The inverse method
is then used for 0.003” polyacetal and 0.001” polyester
two-dimensional networks, along with three-dimensional
samples (see Appendix B 4 and Figs. S10–S12 [36]). For
the remaining three samples, we introduce an identical edge
crack with length ∼w0=2 perpendicular to the loading
direction. Uniaxial tensile tests are performed on the three
notched samples at a loading rate of 100 mm=min. Since
the rupture of strands is uncontrolled when a notched
sample is loaded to the fracture event, we preset the critical
stretched height hc and consider the bridging strands to
“rupture” when the whole network reaches that applied
height. The energy release rate of the pristine sample at
h ¼ hc is measured and recorded. The intrinsic fracture
energy Γ0 of the network is computed by integrating the
stress-height behavior of the unnotched sample to h ¼ hc
as Γ0 ¼

R hc
h0

sdh [Fig. S12(b) [36] ]. The rupture length Lf

of the bridging strand is measured using calipers when the
notched sample reaches hc [Fig. S12(a) [36] ], and the
rupture force ff is interpolated from the single-strand
force-length curve [Fig. S12(c) [36] ].

4. Experimental measurement of three-dimensional
architected networks

Three-dimensional pure shear tests are performed using a
single-axis Instron universal testing machine (500N load
cell, Instron 5566) at a constant loading rate of 1 mm=s.
Prior to mechanical loading, rigid acrylic mounts are glued
to the rectangular plates printed on the top and bottom faces
of the sample. Mounts are then fixed via mechanical
grippers within the testing apparatus. The fracture energy
Γ0 is calculated by the same procedures outlined for the
two-dimensional networks (see Appendix B 3), unless
otherwise noted. Note that crack of width w0=2 is cut
through all layers in the thickness direction. The rupture
lengths Lf of the bridging strand are measured based on
snapshots of experimental recordings at different critical
sample heights hc ¼ h (see Fig. S11 [36]). At each loading
state, we measure five bridging strands in the thickness
direction and take their average as the current Lf. Note that,
due to gravity, the strands fall on each other at the original
height of 186 mm. The network is not fully opened until it
has been stretched to 350 mm. To eliminate the effect of
gravity, we set the measured force to 0 N until the network
is stretched to 350 mm.

[1] Yuval Mulla, Mario J. Avellaneda, Antoine Roland, Lucia
Baldauf, Wonyeong Jung, Taeyoon Kim, Sander J. Tans,

and Gijsje H. Koenderink, Weak catch bonds make strong
networks, Nat. Mater. 21, 1019 (2022).

[2] Federica Burla, Simone Dussi, Cristina Martinez-Torres,
Justin Tauber, Jasper van der Gucht, and Gijsje H.
Koenderink, Connectivity and plasticity determine collagen
network fracture, Proc. Natl. Acad. Sci. U.S.A. 117, 8326
(2020).

[3] Elena Kassianidou, Christoph A. Brand, Ulrich S. Schwarz,
and Sanjay Kumar, Geometry and network connectivity
govern the mechanics of stress fibers, Proc. Natl. Acad. Sci.
U.S.A. 114, 2622 (2017).

[4] Daisuke Mizuno, Catherine Tardin, Christoph F. Schmidt,
and Frederik C. MacKintosh, Nonequilibrium mechanics of
active cytoskeletal networks, Science 315, 370 (2007).

[5] Ovijit Chaudhuri, Sapun H. Parekh, and Daniel A. Fletcher,
Reversible stress softening of actin networks, Nature
(London) 445, 295 (2007).

[6] Timothée Vignaud, Calina Copos, Christophe Leterrier,
Mauricio Toro-Nahuelpan, Qingzong Tseng, Julia
Mahamid, Laurent Blanchoin, Alex Mogilner, Manuel
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