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Abstract

This paper studies a gel formed by a network of cross-linked polymers and a species of mobile molecules. The gel is
taken to be a dielectric, in which both the polymers and the mobile molecules are non-ionic. We formulate a theory of
the gel in contact with a solvent made of the mobile molecules, and subject to electromechanical loads. A free-energy func-
tion is constructed for an ideal dielectric gel, including contributions from stretching the network, mixing the polymers and
the small molecules, and polarizing the gel. We show that the free-energy function is non-convex, leading to instabilities.
We also show that mechanical constraint markedly affects the behavior of the gel.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

When a species of long polymers are cross-linked into a three-dimensional network, the resulting material,
known as an elastomer, is capable of large elastic deformation. Another species of molecules, of a low molec-
ular weight, and capable of weak bonding with one another and with the polymers, can act as a solvent. When
the elastomer is immersed in the solvent, the small molecules diffuse into the interstitial space of the network.
The cross links in the network prevent the polymers from dissolving; rather, the network swells. The aggregate
of the swollen network and the small molecules is called a gel. As the small molecules diffuse in and out, the gel
swells and shrinks reversibly.

This paper studies the behavior of a gel immersed in a solvent and subject to electromechanical loads.
Attention is restricted to dielectric gels, in which both the network and the solvent are non-ionic. When a bat-
tery in an external circuit applies a voltage between two electrodes attached to the gel, the molecules in the gel
polarize, and a certain amount of electric charge flows through the external circuit from one electrode to the
other. We assume that no charged species migrates inside the gel. Dielectric gels may be used as insulators,
sensors and actuators (Finis and Claudi, 2007; Filipcsei et al., 2000; Hirai, 2007; Hirai et al., 1994; Hirai
et al., 2000; Popovic et al., 2001; Zheng et al., 2000; Zrinyi et al., 2000).
0020-7683/$ - see front matter � 2008 Elsevier Ltd. All rights reserved.
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Scientific study of gels dates back to 1940s. Much of the literature has focused on the statistical mechanics
of swelling; for reviews, see Flory (1953), Treloar (1975), Li and Tanaka (1992), and Horkay and McKenna
(2007). As the small molecules mix with the polymers, the network is stretched. While the mixing increases the
number of configurations of the mixture, stretching decreases the number of configurations of the individual
polymer chains. Thus, swelling is mainly an outcome of the competition between the entropy of mixing and
the entropy of stretching. Their compromise equilibrates the gel and the solvent, setting the equilibrium
amount of swelling.

There has also been a large body of the literature on the continuum theory of gels. Gibbs (1878) formulated
a theory of finite deformation of an elastic solid that absorbs a fluid, assuming that the solid and the fluid have
reached equilibrium. Biot (1941) accounted for the transient process of the fluid migrating in the solid using
Darcy’s law. Lai et al. (1991) extended the theory to include the effects of ions and electric fields. More recent
work has been reported by, among many others, Durning and Morman (1993), Dolbow et al. (2004), Ji et al.
(2006), Korchagin et al. (2007), Tsai et al. (2004), and Li et al. (2007a,b). Qi (2007) has led an online discussion
on the mechanics of gels.

We are unaware of any continuum theory of dielectric gels subject to electromechanical loads. Such a the-
ory can be in principle reduced from the existing theories of ionic gels. We are, however, uncertain of the ways
in which electrical effects are introduced in the existing theories. In particular, we do not believe that Maxwell
stresses have any general theoretical significance in dielectrics, and the effect of electric field on stress should be
considered as part of material laws. Furthermore, since ionic gels and dielectric gels can behave very differ-
ently, it is worthwhile to formulate a theory explicitly for dielectric gels.

This paper focuses on homogeneous deformation of dielectric gels and its stability. The treatment extends
recent work of Suo et al. (2008), Zhao et al. (2007), and Zhao and Suo (2007) on dielectric elastomers. We
construct a free-energy function of dielectric gels, including contributions from stretching, mixing, and polar-
izing. We show that the Maxwell stresses have no theoretical significance for dielectrics in general, but can
emerge from special form of the free-energy function. We then apply the theory to analyze the behavior of
a gel under representative loading conditions. We show that mechanical constraint markedly affects electro-
mechanical behavior.
2. A network of polymers immersed in a solvent and subject to electromechanical loads

Fig. 1 illustrates the system to be studied. A species of long polymers are cross-linked into a three-dimen-
sional network, while a species of small molecules form a liquid solvent. In a reference configuration (Fig. 1a),
the network and the solvent are separated from each other, and the network is a solid block of dimensions
L1L2 L3, sandwiched between two electrodes. In the current configuration (Fig. 1b), the network is immersed
in the solvent. The small molecules in the solvent migrate into the interstitial space of the network. The paper
will focus on homogenous fields in the gel, assuming that the polymers and the small molecules have reached
thermodynamic equilibrium.

Let M be the number of the small molecules in the gel, and denote the nominal concentration of the small
molecules in the gel by
C ¼ M=ðL1L2L3Þ: ð1Þ
The gel swells to dimensions l1l2l3. Denote the stretches of the gel by
k1 ¼
l1

L1

; k2 ¼
l2

L2

; k3 ¼
l3

L3

: ð2Þ
Three weights apply forces F1, F2 and F3 to the gel in three directions. Define the nominal stresses s1, s2 and
s3 in the gel by
s1 ¼
F 1

L2L3

; s2 ¼
F 2

L3L1

; s3 ¼
F 3

L1L2

: ð3Þ
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Fig. 1. A species of polymers form a cross-linked network, which is then sandwiched between two electrodes. A species of small molecules
form a liquid. (a) In the reference state, no weights or battery are applied on the elastomer, and no small molecules exist inside the
elastomer. (b) In the current state, the elastomeric block is immersed in the liquid, which acts as a solvent. As the small molecules enter the
interstitial space of the polymers, the combination forms a gel. Three weights apply forces on the gel in three directions, while a battery
applies a voltage between the two electrodes.
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The weights may be applied via compliant and porous presses, allowing the gel to deform without con-
straint, and the small molecules to enter or leave the gel freely. Denote the true stresses by r1 = F1/(l2l3),
r2 = F2/(l3l1) and r3 = F3/(l1l2), which relate to the nominal stresses by s1 = r1k2k3, s2 = r2k3k1 and
s3 = r3k1k2.

Through an external circuit a battery applies a voltage U between the two electrodes. Denote the nominal
electric field in the gel by
eE ¼ U
L3

: ð4Þ
By contrast, denote the true electric field by E = U/l3, which relates to the nominal electric field by eE ¼ Ek3.
The gel is taken to be a dielectric, and let Q be the magnitude of the electric charge on either of the two

electrodes. Denote the nominal electric displacement in the gel by
eD ¼ Q
L1L2

: ð5Þ
Denote the true electric displacement by D = Q/(l1l2), which relates to the nominal electric displacement byeD ¼ Dk1k2.
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2.1. Molecular incompressibility

We assume that both the individual polymers and the individual small molecules are incompressible. Fur-
thermore, the void space inside the gel is negligible. Let v be the volume per small molecule. When the gel gains
M small molecules, the volume of the gel changes from L1 L2L3 to l1l2l3 = L1L2L3 + vM. Dividing this expres-
sion by L1L2L3, we obtain that
k1k2k3 ¼ 1þ vC: ð6Þ
This equation expresses the condition of molecular incompressibility.
Consider a gel and an external liquid solvent both subject to a state of uniform hydrostatic stress. Under the

condition of molecular incompressibility, the hydrostatic stress does no work when a small molecule relocates
from the external liquid to the gel. Consequently, a uniform hydrostatic stress applied on both the gel and the
external liquid does not affect the thermodynamic state of the system. We should emphasize that this conclu-
sion only applies when the external solvent is liquid. If the external solvent is gaseous, however, the hydrostatic
stress does do work when a small molecule relocates from the gas to the gel. In this paper, we will only con-
sider incompressible liquid solvents.
2.2. Free-energy function, equations of state, and generalized modulus

The gel, the liquid, the weights, and the battery together constitute a thermodynamic system. We assume
that the system is held at a constant temperature T. Let W be the Helmholtz free energy of the gel in the cur-
rent state divided by the volume of the polymer in the reference state. To be specific, assume that the weights
apply constant forces F1,F2,F3 to the gel, and that the battery applies a constant voltage U between the two
electrodes. When the gel deforms from dimensions L1L2L3 to l1l2l3, the potential energy of weights reduces by
F1(l1 � L1) + F2(l2 � L2) + F3(l3 � L3). When an amount of charge Q flows through the external circuit from
one electrode to the other, the potential energy of the battery reduces by UQ. The free energy of the system, G,
is the sum of that of the gel, the weights, and the battery, given by
G ¼ W ðk1; k2; k3; eDÞL1L2L3 � F 1ðl1 � L1Þ � F 2ðl2 � L2Þ � F 3ðl3 � L3Þ � UQ: ð7Þ
In writing (7), we enforce the condition of molecular incompressibility (6), so that the free-energy of the gel is a
function of four generalized coordinates, k1; k2; k3; eD. One may also call the quantity G the total potential
energy.

Thermodynamics dictates that a stable equilibrium state of the system should minimize G. Let ðk1; k2; k3; eDÞ
be an equilibrium state. When the state varies slightly, from ðk1; k2; k3; eDÞ to
ðk1 þ dk1; k2 þ dk2; k3 þ dk3; eD þ deDÞ, the free energy of the system varies by
dG
L1L2L3

¼ oW
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� s1

� �
dk1 þ

oW
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� s2

� �
dk2 þ
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� �
dk3 þ
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� �

deD þ o2W

2ok2
1

dk2
1

þ o2W
ok1ok2

dk1dk2 þ
o2W

ok1ok3

dk1dk3 þ
o2W

ok1oeD dk1deD þ o2W

2ok2
2

dk2
2 þ

o2W
ok2ok3

dk2dk3

þ o2W

ok2oeD dk2deD þ o2W

2ok2
3

dk2
3 þ

o2W

ok3oeD dk3deD þ o2W

2oeD2
deD2 ð8Þ
We have included the variation up to the second power of the variations of the generalized coordinates.
To ensure that the state ðk1; k2; k3; eDÞ minimizes G, the coefficients of the first variations must vanish, lead-

ing to
s1 ¼
oW
ok1

; s2 ¼
oW
ok2

; s3 ¼
oW
ok3

; eE ¼ oW

oeD : ð9Þ
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In deriving (9), we have regarded s1; s2; s3; eE as the loading parameters set by the weights and the battery. We
may also regard s1; s2; s3; eE as functions of the generalized coordinates ðk1; k2; k3; eDÞ. Thus, once the free-en-
ergy function of the gel, W ðk1; k2; k3; eDÞ, is prescribed, (9) gives the equations of state of the gel.

When the generalized coordinates vary by small amounts, dk1; dk2; dk3; deD, to maintain equilibrium, (9) dic-
tates that the loading parameters vary by ds1; ds2; ds3; deE, such that
ds1

ds2

ds3

deE

26664
37775 ¼

o2W
ok2

1

o2W
ok1ok2

o2W
ok1ok3

o2W

ok1oeD
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ok2oeD
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ok2

3

o2W

ok3oeD
sym o2W

oeD2

2666666664

3777777775
dk1

dk2

dk3

deD

26664
37775 ð10Þ
The matrix in (10), known as the Hessian, linearly maps the changes in the generalized coordinates to the
changes in the loading parameters. That is, the Hessian is the generalized tangent modulus. At a given equi-
librium state ðk1; k2; k3; eDÞ, the Hessian is a symmetric matrix, and has four real eigenvalues, KI,KII,KIII,KIV,
arranged from small to large. Each eigenvector represents a mode of change in state, and the associated eigen-
value is the modulus of this mode. The four eigenvectors are orthogonal to one another.
2.3. Stability

To ensure that a state ðk1; k2; k3; eDÞ minimizes G, the sum of the second derivatives in (8) must be positive
for any arbitrary variation of the generalized coordinates. This condition is equivalent to that the Hessian is
positive-definite at ðk1; k2; k3; eDÞ, or that all four eigenvalues of the Hessian are positive, or that the function
W ðk1; k2; k3; eDÞ is convex at ðk1; k2; k3; eDÞ.

The generalized coordinates ðk1; k2; k3; eDÞ form a space, which we can divide into regions of two kinds. In
one kind, the free-energy function is convex, and in the other, the free energy is non-convex. The boundary of
the two kinds of the regions is given by the equation
KIðk1; k2; k3; eDÞ ¼ 0: ð11Þ
This boundary generalizes the inflexion point of a function of one variable.
A positive-definite Hessian only guarantees meta-stability. Under this meta-stable condition, the free

energy is a local minimum against small variations of the generalized coordinates, but not necessarily a global
minimum against finite variations of the generalized coordinates. This paper will be restricted to the meta-sta-
ble condition. See Zhao et al. (2007) for an example of global minimum that leads to coexistent states in a
dielectric elastomer.
3. Free-energy function of ideal dielectric gels

To carry out calculations, we need an explicit form of the free-energy function. Our intention is to illustrate
the general procedure, and to describe approximate behavior of dielectric gels. As such, we will adopt a sim-
plest form of the free-energy function. To describe accurate behavior of a specific gel would require adding
terms and parameters to fit experimental data, a task that is beyond the scope of this paper.

The Helmholtz free energy of a dielectric gel comes from several molecular processes: stretching the net-
work of polymers, mixing the polymers and the small molecules, and polarizing the gel. We assume that
the Helmholtz free energy of the gel takes the form
W ¼ W s þ W m þ W p; ð12Þ
where Ws, Wm and Wp are, respectively, the contributions of stretching, mixing and polarizing.
The Helmholtz free energy of stretching a network of polymers is taken to be (Flory, 1953)
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W sðk1; k2; k3Þ ¼
1

2
NkT k2

1 þ k2
2 þ k2

3 � 3� 2 log k1k2k3

� �
; ð13Þ
where N is the number of chains in the gel divided by the volume of the gel in the reference state, and kT is the
temperature in the unit of energy.

When the polymers are not cross-linked, the polymers and the small molecules can form a solution. The
Helmholtz free energy of mixing is taken to be (Flory, 1942; Huggins, 1941)
W mðCÞ ¼ �
kT
v

vC log 1þ 1

vC

� �
þ v

1þ vC

� �
: ð14Þ
Here, vC is the volume of the small molecules in the gel divided by the volume of the polymers. The first term
inside of the bracket of (14) comes from the entropy of mixing, and the second from the enthalpy of mixing,
where v is a dimensionless parameter. The enthalpy of mixing motivates the small molecules to enter the gel if
v < 0, but motivates the small molecules to come out of the gel if v > 0. The change in the free energy asso-
ciated with relocating one small molecule from the liquid to the gel is
dW m

dC
¼ kT log

vC
1þ vC

þ 1

1þ vC
þ v

ð1þ vCÞ2

" #
: ð15Þ
We are interested in gels that contain mostly small molecules, namely, vC� 1. As an approximation, we
assume that the gel has a dielectric energy of the same form as a liquid, with a constant permittivity �. Thus,
the dielectric energy per unit current volume is D2/(2�). Consequently, in terms of the nominal electric dis-
placement eD, the dielectric energy in the current state divided by the volume in the reference configuration is
W p ¼
k3
eD2

2�k1k2

: ð16Þ
When the dielectric behavior of a gel is the same as that of a liquid, we refer to the gel as an ideal dielectric gel.
Partitioning the free energy of a gel into additive parts is itself an approximation. The approximation dates

back at least to Flory and Rehner (1943a,b) who, in a model of swelling, expressed the free energy of a gel as
the sum of the free energy of stretching and the free energy of mixing. More recently, Zhao et al. (2007) mod-
eled a dielectric elastomer by adding the free energy of stretching and the free energy of polarization. A jus-
tification of such a partition is as follows. The network of polymers has a low density of cross links, so that the
processes of mixing and polarizing are nearly unaffected by stretching. Furthermore, we are mainly interested
in a gel that contains a small volume fraction of polymers, but a large volume fraction of small molecules, so
that the dielectric behavior of the gel is expected to be similar to that of the liquid solvent.

Substituting the above free-energy function into (9), we obtain the equations of the state of the ideal dielec-
tric gel:
s1 ¼ NkT k1 � k�1
1

� �
þ k2k3

v
dW mðCÞ

dC
� k3

eD2

2�k2
1k2

ð17aÞ

s2 ¼ NkT k2 � k�1
2

� �
þ k3k1

v
dW mðCÞ

dC
� k3

eD2

2�k1k
2
2

ð17bÞ

s3 ¼ NkT k3 � k�1
3

� �
þ k1k2

v
dW mðCÞ

dC
þ

eD2

2�k1k2

ð17cÞ

eE ¼ k3
eD

�k1k2

ð17dÞ
These equations can also be expressed in terms of the true quantities:
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r1 ¼ NkT k1 � k�1
1

� �
k�1

2 k�1
3 þ

1

v
dW mðCÞ

dC
� 1

2
�E2 ð18aÞ

r2 ¼ NkT k2 � k�1
2

� �
k�1

3 k�1
1 þ

1

v
dW mðCÞ

dC
� 1

2
�E2 ð18bÞ

r3 ¼ NkT k3 � k�1
3

� �
k�1

1 k�1
2 þ

1

v
dW mðCÞ

dC
þ 1

2
�E2 ð18cÞ

D ¼ �E ð18dÞ
In the expressions for the three stresses, the first terms are the elastic stresses caused by stretching the network
of polymers, the second terms are the osmotic pressure due to the inability of the polymers to leave the gel, and
the third terms are due to the electric field. The third terms coincide with the Maxwell stresses because we have
assumed that the dielectric behavior of the gel is the same as that of a liquid. In general, however, the effect of
the electric field on the stresses may take other forms. For example, if the permittivity � is a function of the
concentration C, more terms involving the electric displacement need be added to (17).

In following calculations, we will normalize the stresses by kT/v, the electric field by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kT =ðv�Þ

p
and the

electric displacement by
ffiffiffiffiffiffiffiffiffiffiffiffi
�kT=v

p
. A representative value of the volume per molecule is v = 10�28m3. At room

temperature, kT = 4 � 10�21 J, and kT/v = 4 � 107 Pa. Taking � = 10�10 F/m, we find thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kT=ðv�Þ

p
¼ 6:3� 108 V=m, and

ffiffiffiffiffiffiffiffiffiffiffiffi
�kT=v

p
¼ 6:3� 10�2 C=m2.

The model has two dimensionless material parameters: v and Nv, which can be readily changed in exper-
iments. For example, the degree of cross-linking may be varied by enzymes, and v may be varied by temper-
ature. The parameter v is a dimensionless measure of the enthalpy of mixing, with representative values
v = 0.2 � 1.2. In the absence of small molecules, the cross-linked polymers have shear modulus NkT under
the small-strain conditions, with the representative values NkT = 104 � 107 N/m2, which gives the range
Nv = 10�4 � 10�1.

The free energy is a function of four variables, W ðk1; k2; k3; eDÞ. We have not found a useful way to display
this function in all its variables. Instead, we will discuss some representative cases.
4. Actuation under biaxial constraint

Consider a layer of a gel bonded to a rigid substrate, which constrains the in-plane stretches, k1 = k2, to a
fixed value. A battery applies voltage U across the thickness of the layer. No weight is applied, and the gel is
free to swell or shrink in the normal direction.

For this loading condition, the formulation in Section 2, based on the dead loads described in Fig. 1, is
not applicable. The total potential energy G should be reformulated with weights F1 and F2 dropped, and
the new potential energy should be minimized with k1 and k2 held constant, and with only two degrees of
freedom, k3 and eD. Consequently, the Hessian reduces to a two-by-two matrix. The condition
KIðk3; eDÞ ¼ 0 is a curve that divides the plane ðk3; eDÞ into two regions (Fig. 2). In the region above
the curve, the free-energy function W ðk3; eDÞ is non-convex; in the region below, the free-energy function
is convex.

Because no weight is applied, s3 = 0, so that (17c) becomes
Nv k3 � k�1
3

� �
þ k2

1 log 1� k�2
1 k�1

3

� �
þ k�2

1 k�1
3 þ vk�4

1 k�2
3

	 

þ

eD2

2k2
1ð�kT =vÞ

¼ 0: ð19Þ
This equation represents a loading path in the ðk3; eDÞ plane, and is also plotted in Fig. 2. As the charge
on the electrodes increases, the thickness of the gel decreases. The loading path lies in the region in
which the free-energy function is convex. Consequently, the loading path consists of a sequence of stable
states.

Fig. 3 plots several quantities as functions of the nominal electric displacement, when the in-plane stretches
are constrained at several values. Fig. 3a is plotted by eliminating k3 from (17d) and (19). The nominal electric
field increases monotonically with the nominal electric displacement. When the in-plane stretches are con-
strained at a larger value, the same applied voltage can induce more charges on the electrodes. Fig. 3b shows



Fig. 3. A gel is subject to biaxial constraint and to a voltage. The variations of eE, E, k3 and vC are plotted as functions of eD. The in-plane
stretches are constrained at several levels.

Fig. 2. A gel is subject to biaxial constraint k1 = k2 = 1, and to a voltage. The system has two degrees of freedom, k3 and eD. The curve
KI ðk3; eDÞ ¼ 0 divides the plane into two regions: W ðk3; eDÞ non-convex and W ðk3; eDÞ convex. The loading path s3ðk3; eDÞ ¼ 0 lies in the
region in which the free energy function is convex.
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that the true electric field is linear in the nominal electric displacement, as expected from (17d). Fig. 3c plots
(19) for several fixed values of the in-plane stretches, indicating that the gel thins down as the charges on the
electrodes increase. Recall the condition of molecular incompressibility, 1þ vC ¼ k2

1k3. Fig. 3d plots vC as a
function of the nominal electric displacement. The in-plane constraint markedly affects the amount of swelling:
the larger the in-plane stretches are, the more the gel swells.
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5. Unconstrained actuation

Consider a layer of a gel sandwiched between flexible electrodes. A battery applies a voltage, therefore eE,
across the thickness of the gel. No weight is applied, and the gel is free to swell in all three directions. The three
stretches obey k1 = k2 6¼ k3, and the system has three degrees of freedom, k1, k3 and eD.

The Hessian reduces to a three-by-three matrix. The condition KIðk1; k3; eDÞ ¼ 0 is a surface that divides the
space ðk1; k3; eDÞ into two regions (Fig. 4). In the region above the surface, the free-energy function
W ðk1; k3; eDÞ is non-convex; in the region below, the free-energy function is convex. Because no weights are
applied, s1 = 0 and s3 = 0. These two conditions are two surfaces in the space ðk1; k3; eDÞ, and are included
in Fig. 4. The intersection of the two surfaces defines a loading path. As eD increases, the gel reduces its thick-
ness and increases its lateral dimensions. When eD is small, the loading path falls in the region in which the
free-energy function is convex. When eD is large, however, the loading path falls in the region in which the
free-energy function is non-convex. The loading path intersects with the surface KIðk1; k3; eDÞ ¼ 0 at a point,
which defines a critical condition ðkc

1; k
c
3;
eDcÞ.

To understand the physical origin of the critical condition, Fig. 5 plots the electromechanical responses of
the gel. In plotting these figures, we set s1 = s3 = 0 in (17a) and (17c), and solve the two nonlinear equations to
obtain k1 and k3 for any given eD. Fig. 5a plots the nominal electric field as a function of the nominal electric
displacement. By definition, eE ¼ U=L3 and eD ¼ Q=ðL1L2Þ. Because L1,L2,L3 remain fixed during deformation,
Fig. 5a is a normalized charge–voltage plot. When the voltage is small, the charge increases with the voltage.
When the voltage is large enough, the gel thins down significantly, inducing a large true electric field in the gel.
Consequently, lower voltage is needed to further increases the charge. The peak voltage corresponds to the
critical condition. The critical condition is marked by crosses in all other plots in Fig. 5. This mode of insta-
bility clearly has a different physical origin from the well known instability in the Flory–Huggins theory, where
certain values of v can cause the free energy to be non-convex (Li and Tanaka, 1992).

Fig. 5d indicates that the lower the enthalpy of mixing is, the more the gel swells, as expected. Note that the
amount of swelling remains nearly constant. That is, the electric voltage causes the gel to reduce the thickness
and expand in the lateral directions, with the volume of the gel being nearly constant. Consequently, the actu-
ation requires little long-range transport of small molecules, and is expected to be fast. In this case, once the
Fig. 4. A gel (v = 0.5 and Nv = 10�3) is subject to a voltage and can deform freely in three directions. The system has three degrees of
freedom, k1, k3 and eD. The surface of KIðk1; k3; eDÞ ¼ 0 divides the space ðk1; k3; eDÞ into two regions: W ðk1; k3; eDÞ non-convex and
W ðk1; k3; eDÞ convex. The conditions s3 = 0 and s1 = 0 give another two surfaces, the intersection of which represents a loading path. Only
part of the loading path falls into the region in which the free-energy function is convex.



Fig. 5. A gel is subject to a voltage but no weights. The variations of eE, E, k3 and vC are plotted as functions of eD. The critical condition is
marked as crosses.

4030 X. Zhao et al. / International Journal of Solids and Structures 45 (2008) 4021–4031
gel is formed, the external liquid becomes superfluous, so that the actuator need not operate in the presence of
the liquid.

6. Concluding remarks

This paper formulates a theory of a dielectric gel immersed in a solvent and subject to electromechanical
loads. We find that the Maxwell stress has no general theoretical significance in dielectrics, but can emerge
as part of special material laws. We show that the free-energy function of a dielectric gel is non-convex, leading
to electromechanical instabilities. We also show that mechanical constraint markedly affects the behavior of
the gel.
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