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Mechanochemically Responsive
Viscoelastic Elastomers
Mechanochemically responsive (MCR) polymers have been designed to possess uncon-
ventional properties such as changing colors, self-healing, and releasing catalysts under
deformation. These properties of MCR polymers stem from a class of molecules, referred
to as mechanophores, whose chemical reactions can be controlled by mechanical forces.
Although extensive studies have been devoted to the syntheses of MCR polymers by incor-
porating various mechanophores into polymer networks, the intricate interactions
between mechanical forces and chemical reactions in MCR polymers across multiple
length and time scales are still not well understood. In this paper, we focus on mechano-
chemical responses in viscoelastic elastomers and develop a theoretical model to charac-
terize the coupling between viscoelasticity and chemical reactions of MCR elastomers.
We show that the kinetics of viscoelasticity and mechanophore reactions introduce differ-
ent time scales into the MCR elastomers. The model can consistently represent experi-
mental data on both mechanical properties and chemical reactions of MCR viscoelastic
elastomers. In particular, we explain recent experimental observations on the increasing
chemical activation during stress relaxation of MCR elastomers, which cannot be
explained with existing models. The proposed model provides a theoretical foundation
for the design of future MCR polymers with desirable properties.
[DOI: 10.1115/1.4033431]

1 Introduction

Mechanical forces applied on molecules can manipulate their
covalent bonds and trigger chemical reactions [1–5]. This
phenomenon is commonly referred to as a mechanochemical
reaction, and the molecules capable of selective mechanochemical
reactions as mechanophores [6]. In recent years, mechanophores
have been widely explored in the design of new materials. One
strategy commonly employed in such designs is to covalently cou-
ple mechanophores on polymer networks to achieve MCR
polymers—a new type of multifunctional and responsive polymers
[7–9]. Deformation of MCR polymers applies mechanical forces
on mechanophores and controls their mechanochemical reactions.
The development of new mechanophores and polymer networks
have led to various MCR polymers that possess extraordinary prop-
erties and functions such as self-healing [10,11], color-changing,
and fluorescence-varying [12,13], catalyst-releasing [4] or force-
controlled cross-linking [14].

In particular, elastomers were recently adopted as matrices for
mechanophores, owning to their capability of large and elastic
deformations [15–21]. The resultant MCR elastomers can undergo
multiple cycles of reversible deformations and repeated mechano-
chemical reactions, in contrast to permanent deformation or
fracture of glassy polymers, creating new potentials for building
flexible MCR devices with various applications in flexible dis-
plays, optoelectronics, biomedical luminescent devices, and
camouflage skins [22].

In contrast to the extensive efforts devoted to syntheses of
MCR polymers, very few models have been developed to reveal
intricate interplays between mechanical forces and chemical reac-
tions in MCR polymers. Recently, elastic and viscoelastic models
for MCR glassy polymers [23] and elastomers [24,25] have been
reported. While these models are consistent with some

experimental data, they fail to explain other important experimen-
tal phenomena. For example, existing models cannot account for
the increasing chemical activation of MCR polymers undergoing
stress–relaxation tests [25]. In addition, rapid accumulation of ex-
perimental data in the field demands the development of general
models that can systematically characterize the interactions
between viscoelastic deformations and mechanochemical reac-
tions observed in different experiments—analogous to the devel-
opment of generalized Maxwell models for viscoelastic materials.

In the current paper, we aim at developing a simple yet general
theoretical model to investigate the interactions between strain-
rate-dependent behaviors of viscoelastic elastomers and mechano-
chemical reactions of the embedded mechanophores. In Sec. 2, we
will present the fundamental assumptions and formulations of the
model, which consists of a generalized Maxwell model with non-
linear springs and dashpots coupled with modules of mechano-
phores. Section 3 discusses typical features of the proposed
model, including the chemical activation, of a single relaxable
network, and combined elastic and relaxable networks. Using the
developed simple model, we will reveal different modes of inter-
actions between viscoelasticity and reactions in MCR elastomers
across multiple time scales. In Sec. 4, we apply the model to char-
acterize the recent experimental measurements on viscoelasticity
and mechanochemical reactions of MCR elastomers. In particular,
we will explain recent experimental observations on the
increasing chemical activation of MCR elastomers during
stress–relaxation process. Concluding remarks are made in Sec. 5.

2 Formulation of the Model

We aim to develop a simple thermodynamic-based model for
MCR viscoelastic elastomers to account for the interactions
between viscoelasticity and mechanochemical reactions in the
elastomers. Since the sizes of mechanophores are usually much
smaller than the lengths of polymer chains, and the concentration
of mechanophores in the elastomers is very small, e.g., less than
1 wt.% [16,22], it is commonly assumed that the presence of
mechanophores does not affect the mechanical properties of the
elastomers [24,25]. Based on this assumption, we will first
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formulate a thermodynamic model for viscoelastic behaviors of
the elastomer, and then couple mechanophores into the model to
study their mechanochemical reactions in viscoelastic elastomers.

2.1 Nonequilibrium Thermodynamics of a Viscoelastic
Elastomer. To focus on the key physical features of visco-
elasticity, we consider a piece of viscoelastic elastomer under
homogeneous deformation at a constant temperature [26]. At the
reference (undeformed) state, the elastomer has dimensions L1,
L2, and L3 (Fig. 1(a)). At the current state, the elastomer is sub-
jected to forces P1, P2, and P3 along three orthogonal directions,
and its dimensions change to l1, l2, and l3 (Fig. 1(b)). As the
dimensions of the elastomer vary infinitesimally by dl1, dl2, and
dl3, the mechanical forces do work by P1dl1 þ P2dl2 þ P3dl3.
Thermodynamics requires that the increase in the free energy of
the elastomer should not exceed the total work done on it, i.e.,

dF � P1dl1 þ P2dl2 þ P3dl3 (1)

where F is the Helmholtz free energy of the elastomer. It should
be noted that the small changes in Eq. (1) are time directed, such
that dx means the change of the quantity x from a specific time t
to a slightly later time tþ dt.

At the current state, the principal stretches of the elastomer can
be calculated as k1 ¼ l1=L1, k2 ¼ l2=L2, and k3 ¼ l3=L3 and the
principal nominal stresses as s1 ¼ P1=ðL2L3Þ, s2 ¼ P2=ðL1L3Þ,
and s3 ¼ P3=ðL1L2Þ. Defining Helmholtz free-energy density of
the elastomer as W ¼ F=ðL1L2L3Þ, we can further express the
thermodynamic inequality (Eq. (1)) as

dW � s1dk1 þ s2dk2 þ s3dk3 (2)

Fig. 1 A piece of a viscoelastic elastomer in the undeformed reference state (a) and in the
deformed current state (b). Schematics of the polymer network of a MCR viscoelastic elasto-
mer in the reference (c) and current (d) states. The elastomer consists of pure elastic (black)
and relaxable chains (gray). (e) A schematic of a generalized Maxwell model coupled with
modules of mechanophores.
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As a model of the viscoelastic elastomer, the free-energy den-
sity function of the elastomer is assumed to be prescribed as a
function

W ¼ Wðk1; k2; k3;K
vÞ (3)

where Kv is a dimensionless internal variable associated with the
dissipative process of the viscoelastic elastomer. As the variables
in Eq. (3) change by infinitesimal amounts, the free-energy den-
sity function varies by

dW ¼ @W

@k1

dk1 þ
@W

@k2

dk2 þ
@W

@k3

dk3 þ
@W

@Kv dKv (4)

Substituting Eq. (4) into Eq. (2), we can rewrite the thermody-
namic inequality as

@W

@k1

� s1

� �
dk1þ

@W

@k2

� s2

� �
dk2þ

@W

@k3

� s3

� �
dk3þ

@W

@Kv dKv� 0

(5)

To satisfy this inequality, we further assume that the first three
terms in Eq. (5) vanish with arbitrary variations of dk1, dk2, and
dk3, so that

s1 ¼
@W k1; k2; k3;K

vð Þ
@k1

(6a)

s2 ¼
@W k1; k2; k3;K

vð Þ
@k2

(6b)

s3 ¼
@W k1; k2; k3;K

vð Þ
@k3

(6c)

Therefore, the thermodynamic inequality can be further
expressed as

_K
v @W k1; k2; k3;K

vð Þ
@Kv � 0 (7)

where _K
v ¼ dKv=dt is the time derivative of the internal variable.

Equations (6) and (7) must hold at every point of the elastomer
and for all times during a deformation process. To capture the
main physical features of viscoelasticity, we adopt a simple evolu-
tion law for Kv that satisfies Eq. (7), i.e.

_K
v ¼ � 1

g
@W k1; k2; k3;K

vð Þ
@Kv (8)

where g is a positive number with the dimension of viscosity (i.e.,
Pa � s).

2.2 Free-Energy Density Function of a Viscoelastic Elastomer.
Adopting a generalized Maxwell model [27,28], we assume that
the viscoelastic behavior of the elastomer can be attributed to two
polymer networks acting in parallel as indicated in Figs. 1(c)
and 1(d) for the reference and current states, respectively
[27,29–31]. The first network (i.e., network A) is a purely elastic
network that characterizes the time-independent mechanical
behavior of the elastomer using a nonlinear spring; and the second
network (i.e., network B) is a relaxable network that accounts for
the time-dependent mechanical behavior of the elastomer using a
nonlinear spring and a dashpot in series. (Note that mechano-
phores will be coupled onto these networks in Sec. 2.5.)

Based on the model illustrated in Fig. 1(e) and the affine-
network assumption [32,33], polymer chains in network A and B
will have the same stretch

K ¼ r

r0

(9)

where r0 and r are the end-to-end distance of a polymer chain at
reference and current states, respectively. While the stretch of
polymer chains in network A is elastic, the stretch of polymer
chains in network B can be decomposed into an elastic part Ke

and an inelastic part Kv for the elastomer under deformation illus-
trated in Fig. 1(a), i.e.

K ¼ KeKv (10)

where Kv is also the internal variable to characterize the dissipa-
tive process in Eq. (8).

Therefore, we can express the Helmholtz free-energy density
function of the elastomer (Fig. 1(b)) as

W ¼ WAðKÞ þWBðKeÞ (11)

where WA and WB are the Helmholtz free-energy density functions
of networks A and B at the current state per unit volume of the
elastomer at the reference state, respectively; and Ke ¼ K=Kv

based on Eq. (10).
Since the type of polymers in networks A and B is the same, the

polymer chains in both networks have the same Kuhn monomer
length b. We further denote the number of Kuhn monomers of a
polymer chain in networks A and B as nA and nB, respectively.
Adopting the Langevin model [34,35], we can express the free
energy of a stretched polymer chain in network A as

wA ¼ nAkT
bA

tanh bA

þ ln
bA

sinh bA

� �
(12)

where bA ¼ L�1ðK= ffiffiffiffiffi
nA
p Þ is the inverse Langevin function of

K=
ffiffiffiffiffi
nA
p

, where Langevin function is defined as LðxÞ ¼
cothðxÞ � 1=x ; k is the Boltzmann constant; and T is the absolute
temperature in Kelvin. The free energy of a stretched polymer
chain in network B is expressed as

wB ¼ nBkT
bB

tanh bB

þ ln
bB

sinh bB

� �
(13)

where bB ¼ L�1ðKe=
ffiffiffiffiffi
nB
p Þ and Ke ¼ K=Kv from Eq. (10).

The numbers of polymer chains in networks A and B per unit
volume of the elastomer at the reference state are denoted as NA

and NB, respectively. Further taking the elastomer as incompressi-
ble, i.e., k1�k2�k3 ¼ 1, we can explicitly express the free-energy
density function of the elastomer as

W ¼ NAnAkT
bA

tanh bA

þ ln
bA

sinh bA

� �

þ NBnBkT
bB

tanh bB

þ ln
bB

sinh bB

� �
� p k1 k2 k3 � 1ð Þ (14)

where the scalar p acts as a Lagrange multiplier to enforce the
incompressibility of the elastomer and is calculated from the
equilibrium equations and boundary conditions.

In order to relate the stretch of polymer chains to macroscopic
principal stretches of the elastomer, we assume both networks
follow the eight-chain network model [36], so that

K ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1 þ k2
2 þ k2

3

3

s
(15)

According to Eqs. (6), (14), and (15), we can now calculate the
principal nominal stresses in the elastomer as
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s1 ¼
k1kT

3K
NA

ffiffiffiffiffi
nA
p

bA þ
NB

ffiffiffiffiffi
nB
p

bB

Kv

� �
� pk2k3 (16a)

s2 ¼
k2kT

3K
NA

ffiffiffiffiffi
nA
p

bA þ
NB

ffiffiffiffiffi
nB
p

bB

Kv

� �
� pk1k3 (16b)

s3 ¼
k3kT

3K
NA

ffiffiffiffiffi
nA
p

bA þ
NB

ffiffiffiffiffi
nB
p

bB

Kv

� �
� pk1k2 (16c)

And, therefore, the principal Cauchy stresses as

r1 ¼ k1s1 ¼
k2

1kT

3K
NA

ffiffiffiffiffi
nA
p

bA þ
NB

ffiffiffiffiffi
nB
p

bB

Kv

� �
� p (17a)

r2 ¼ k2s2 ¼
k2

2kT

3K
NA

ffiffiffiffiffi
nA
p

bA þ
NB

ffiffiffiffiffi
nB
p

bB

Kv

� �
� p (17b)

r3 ¼ k3s3 ¼
k2

3kT

3K
NA

ffiffiffiffiffi
nA
p

bA þ
NB

ffiffiffiffiffi
nB
p

bB

Kv

� �
� p (17c)

According to Eqs. (8) and (14), we can further calculate the
evolution law of the internal variable Kv as

_K
v ¼ 1

g
NB

ffiffiffiffiffi
nB
p

kT

� �
K

K�ð Þ2
bB with K�jt¼0 ¼ 1 (18)

It is evident that g represents the viscosity of the dashpot in the
model of Fig. 1(e).

Solving Eqs. (17) and (18) together with initial and boundary
conditions can provide the evolution of stresses, deformations,
and dissipation in the viscoelastic elastomer over time.

2.3 Mechanochemical Reaction of Mechanophores. Now
that a thermodynamic model of viscoelastic elastomers has been
established, we will study the effects of elastomer deformation
and polymer chain forces on reactions of mechanophores as illus-
trated in Fig. 1(e). It should be noted that since the contribution of
mechanophores to the free energy of elastomer is negligible, they
are not included in the current thermodynamic model of visco-
elastic elastomers. While this treatment significantly simplifies
our model, the contribution of mechanophores to free-energy vari-
ation of elastomers can be incorporated in future models based
on the nonequilibrium thermodynamic framework presented in
Sec. 2.1.

In order to compare our model with experimental data in
Sec. 4, we will discuss the mechanochemical reaction based on a
specific mechanophore, spiropyran, which has been widely used
in MCR elastomers. However, the framework of the theory is ap-
plicable to other types of mechanophores. Mechanochemical reac-
tion or transformation of a mechanophore among different states
accompanies with the change of potential energy of the molecule
along a reaction coordinate [37]. Colorless spiropyran is able to
transform into a colored state, merocyanine, through a reversible
ring-opening reaction (Fig. 2(a)), following a potential energy
profile on the reaction coordinate (Fig. 2(b)). The potential energy
profile is significantly affected by the forces applied on the mole-
cule as shown in Fig. 2(c) [15]. We denote the numbers of mecha-
nophores coupled to elastic and relaxable networks per unit
volume of elastomer as cA and cB, respectively. Specifically, the
numbers of spiropyran on elastic and relaxable networks per unit

volume of elastomer are denoted as cS
A and cS

B, respectively; and
the numbers of merocyanine coupled to elastic and relaxable net-

works per unit volume of elastomer as cM
A and cM

B , respectively. It

is evident that cA ¼ cM
A þ cS

A and cB ¼ cM
B þ cS

B. Mechanophore
transformation between the two states of spiropyran and merocya-
nine is governed by the following kinetic relations for networks A
and B [38]:

dcM
A

dt
¼ kf

AcS
A � kr

AcM
A (19a)

dcM
B

dt
¼ kf

BcS
B � kr

BcM
B (19b)

where kf
A and kr

A represent force-dependent forward (spiropyran to
merocyanine) and reverse (merocyanine to spiropyran) reaction
rates of mechanophores coupled to the elastic network, respec-

tively; and kf
B and kr

B represent force-dependent forward and
reverse reaction rates of mechanophores coupled to the relaxable

network, respectively. The unit of all reaction rates kf
A, kr

A, kf
B, and

kr
B is s�1. As the number of merocyanine in the MCR elastomer

determines its color and fluorescence, we will focus on the
merocyanine concentration during mechanochemical reactions.
Since cA and cB remain constant during reactions, Eq. (19) can be
rewritten as

dcM
A

dt
¼ � kf

A þ kr
A

� �
cM

A þ kf
AcA (20a)

dcM
B

dt
¼ � kf

B þ kr
B

� �
cM

B þ kf
BcB (20b)

The above ordinary differential equations can be solved, given
the reaction rates and initial conditions cM

A jt¼0 and cM
B jt¼0. After

solving Eq. (20), the total number of merocyanine in a unit vol-
ume of the MCR elastomer cM can be calculated as

cMðtÞ ¼ cM
A ðtÞ þ cM

B ðtÞ (21)

We can further define the activation efficiency of mechano-
phores as

Fig. 2 Mechanochemical transformation of a mechanophore
molecule through a reversible ring-opening reaction from the
spiropyran state to the merocyanine state (a). Potential energy
landscapes of the mechanophore under zero (b) and nonzero
(c) applied force.
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aA tð Þ ¼ cM
A tð Þ
cA

(22a)

aB tð Þ ¼ cM
B tð Þ
cB

(22b)

a tð Þ ¼ cM
A tð Þ þ cM

B tð Þ
cA þ cB

¼ cA

cA þ cB
aA tð Þ þ cB

cA þ cB
aB tð Þ (22c)

for network A, network B, and the elastomer, respectively.
When the mechanochemical reactions of mechanophores reach

equilibrium, the number of merocyanine per unit volume of elas-
tomer can be calculated based on Eq. (20) as

cM
A

����
equ

¼ cA
kf

A

kf
A þ kr

A

(23a)

cM
B

����
equ

¼ cB
kf

B

kf
B þ kr

B

(23b)

By substituting Eq. (23) into Eq. (22), we can calculate the activa-
tion efficiency at equilibrium as

aA

����
equ

¼ kf
A

kf
A þ kr

A

(24a)

aB

����
equ

¼ kf
B

kf
B þ kr

B

(24b)

a

����
equ

¼ cA

cA þ cB
aA

����
equ

þ cB

cA þ cB
aB

����
equ

(24c)

2.4 Force-Dependent Reaction Rates of Mechanophores.

From Eq. (19), it can be seen that the reaction rates kf
A, kr

A, kf
B, and

kr
B are critical parameters that determine the mechanochemical

reactions in MCR elastomers. Following the transition state theory
[37], these parameters can be determined by the potential energy
profile of the mechanophore (Figs. 2(b) and 2(c)). Along the reac-
tion pathway, the potential energy of the mechanophore goes from
one minimum (the reactant state) to another minimum (the prod-
uct state) and passes through a transition state. The difference
between potential energies of reactant and transition states is the
activation energy which is the minimum energy required for the
reaction to occur. The force-free forward and reverse activation

energies are denoted by DGS0 and DGM0, respectively (Fig. 2(b)).
Adopting the Arrhenius equation, the activation energies can be
related to the force-free reaction rates as [39]

kf 0 ¼ Df exp �DGS0

kT

� �
(25a)

kr0 ¼ Dr exp �DGM0

kT

� �
(25b)

where kf 0 and kr0 are the force-free forward and reverse reaction
rates, respectively; and the frequency factors Df and Dr are related
to the diffusion rates of the molecule toward the transition state
[40]. Typical values of Df and Dr are on the order of 1013 s�1 [41].

Applying force on the mechanophore lowers the activation
energy of the forward transformation to DGS and increases the
activation energy of the reverse transformation to DGM as illus-
trated in Fig. 2(c). Therefore, the force-dependent forward and
reverse reaction rates can be calculated as

kf ¼ Df exp �DGS

kT

� �
(26a)

kr ¼ Dr exp �DGM

kT

� �
(26b)

According to the Bell model [42], the applied force f linearly
modifies the activation energies by

DGS ¼ DGS0 � f DxS (27a)

DGM ¼ DGM0 þ fDxM (27b)

where DxS and DxM are reaction distances from spiropyran and
merocyanine states to the transition state, respectively (Fig. 2(b)).
Therefore, by substituting Eqs. (25) and (27) into Eq. (26), the
force-dependent forward and reverse reaction rates of mechano-
phores in each network can be expressed as

kf
A ¼ kf 0 exp

fADxS

kT

� �
(28a)

kr
A ¼ kr0 exp � fADxM

kT

� �
(28b)

kf
B ¼ kf 0 exp

fBDxS

kT

� �
(28c)

kr
B ¼ kr0 exp � fBDxM

kT

� �
(28d)

where fA and fB are chain forces in elastic and relaxable networks,

respectively. In addition, we can further assume that Dx ¼ DxM ¼
DxS in Eqs. (27) and (28) based on the results from recent atomis-
tic calculations and experiments [25,41], where the reaction dis-
tance Dx was reported to be on the order of a few angstroms.

2.5 Coupling Between Viscoelasticity and Mechanochemical
Reactions. The coupling between viscoelastic deformation of
MCR elastomers and mechanochemical reactions of mechano-
phores is through the forces that are generated in the stretched
polymer chains of the elastomer and applied on mechanophores
(Figs. 1(c)–1(e)). Here, we have neglected the effects of intermo-
lecular forces on the reaction kinetics of mechanophores since
these forces are weak and therefore not included in the thermody-
namic model of the elastomer (Sec. 2.2). Furthermore, their
effects on the mechanochemical reactions of mechanophores are
not well understood [25].

At the reference state, the length of unstretched polymer chains
in network A is given from random-walk statistics as rA0 ¼

ffiffiffiffiffi
nA
p

b.
From Eq. (9), the length of stretched polymer chains in network A
at the current state can be calculated as rA ¼ K

ffiffiffiffiffi
nA
p

b. Therefore,
from Eq. (12), the force on a polymer chain in network A is

fA ¼
@wA

@rA
¼ kT

b
L�1 Kffiffiffiffiffi

nA
p

 !
(29)

At the reference state, the length of unstretched polymer chains
in network B is given from random-walk statistics as rB0 ¼

ffiffiffiffiffi
nB
p

b.
The chains are stretched to a length of re

B ¼ Ke ffiffiffiffiffi
nB
p

b due to pure
elastic deformation at the current state. From Eq. (13), the force
of a polymer chain in network B can be calculated as

fB ¼
@wB

@re
B

¼ kT

b
L�1 K=Kvffiffiffiffiffi

nB
p

 !
(30)
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Solving Eqs. (17) and (18) with initial and boundary conditions
will give the macroscopic deformation and stresses in the elasto-
mer and stretches in polymer chains. Subsequently, the chain
forces in networks A and B can be calculated with Eqs. (29) and
(30). By substituting chain forces into Eq. (28) and subsequently
solving Eq. (19), the rates of mechanochemical reactions and
activation efficiencies can be calculated.

3 Results and Discussion

3.1 Characteristic Time Scales in MCR Viscoelastic
Elastomers. Now that a model for coupled viscoelasticity and
mechanochemical reactions in elastomers has been established,
we will use the model to discuss the unique features of MCR
viscoelastic elastomers. Both viscoelasticity and mechanochemi-
cal reactions introduce characteristic time scales into the material.
The interplay of these time scales can lead to interesting mechani-
cal and chemical responses of the elastomer over time.

Based on the dashpot in series with the nonlinear spring in
network B, we define a typical time scale for mechanical relaxa-
tion as [30]

sM ¼ g
NBkT

(31)

where NBkT is the initial shear modulus of the nonlinear spring in
network B [27]. Although sM in Eq. (31) does not account for the
nonlinearity of the relaxation response, it is still representative of
this process over long times when strain and time-dependent
effects can be separated [43,44].

For the mechanophore in either network of the model, a typical
time scale for mechanochemical reactions can be defined as [24]

sR ¼ 1

kf þ kr
(32)

Since the reaction rate significantly depends on the force
applied on the mechanophore and the applied force may vary over
time, we further define the time scale for reactions by considering
a typical scale of the applied force �f , i.e.

sR ¼ 1

kf 0 exp
�f Dx

kT

� �
þ kr0 exp

��f Dx

kT

� � (33)

In an extreme case, when the applied force on the mechanophore
is zero, a typical time scale for the force-free reaction is

sR0 ¼ 1

kf 0 þ kr0
(34)

For spiropyran and merocyanine, sR0 is about 20 s, since
kf 0 ¼ 8:5� 10�6 s�1 and kr0 ¼ 4:9� 10�2 s�1 according to the
recent experiments [41], and the activation efficiency at
equilibrium is only 1:7� 10�4 (Eq. (24)). Applying force on the
mechanophore modifies the reaction time scale nonmonotonically
[24] and transforms the molecule toward its merocyanine
state, i.e., higher activation efficiency. For example, if we take
Dx ¼ 2:7� 10�10 m and T ¼ 300 K in Eq. (33), an average force
of 70 pN applied on the mechanophore increases sR to 754 s and
raises the activation efficiency to 0.6. If we increase the force to
150 pN, the reaction time scale sR reduces to 7 s, and the mecha-
nophore almost fully transforms to the merocyanine state, i.e.,
ajequ � 1.

3.2 Typical Mechanical and Mechanochemical Behaviors.
Now that the characteristic time scales in MCR viscoelastic elas-
tomers have been identified, we will discuss typical mechanical
and mechanochemical behaviors of the elastomers with different

ratios of mechanical to reaction time scales (i.e., different sM=sR).
To focus on the essential physical features, we assume the elasto-
mer undergoes a history of relatively simple deformation: The
elastomer is stress free and in equilibrium when t < 0 and then
subjected to a stretch at t ¼ 0, which is maintained constant over
time (Fig. 3(b)). This is analogous to a stress–relaxation test on
viscoelastic materials.

In all calculations, we take T ¼ 300 K and typical values of

b ¼ 14:7� 10�10 m, Dx ¼ 2:7� 10�10 m, kf 0 ¼ 8:5� 10�6 s�1,

and kr0 ¼ 4:9� 10�2 s�1. To simplify the calculation, we assume
the chain length in both networks is the same nA ¼ nB ¼ 30, and
the numbers of mechanophores in both networks are equal, i.e.,
cA=cB ¼ 1. We also take the applied stretch on chains as
K ¼ 0:9

ffiffiffiffiffi
nB
p

. In the elastic network, the applied chain force

is constant during the stress–relaxation process, so that
�f A ¼ fA ¼ 38 pN. In the relaxable network, the applied chain force
decreases from a maximum value fBjt¼0 to zero over time, so we

define �f B ¼ fBjt¼0=2 ¼ 19 pN. Based on Eq. (33), we can further
evaluate the time scales for chemical reaction in elastic and

relaxable networks as sR
A ¼ 119 s and sR

B ¼ 49 s. We then vary

sM ¼ g=NBkT in the range reported for various elastomers [45,46]

to investigate the effect of time scale ratio sM=sR
B on mechanical

and chemical responses.
We first consider an MCR elastomer that only consists of the

relaxable network (i.e., only network B or NA ¼ 0) as illustrated
in Fig. 3(a). The mechanical relaxation and chemical reaction in
this system give two time scales sM and sR

B, respectively. We
investigate the responses of network B for various cases of sM=sR

B,
each exhibiting a distinct reaction behavior.

When sM=sR
B ¼ 1, the behavior of network B approaches to

the behavior of a pure elastic network, where chain forces remain
constant (Fig. 3(c)) and activation efficiency of mechanophores
increases monotonically to equilibrium (Fig. 3(d)). On the other
hand, when the mechanical relaxation time scale is much shorter

than the reaction time scale, e.g., sM=sR
B ¼ 10�2, very rapid relax-

ation of chain forces (Fig. 3(c)) prevents noticeable chemical acti-
vation (Fig. 3(d)) and mechanophores configuration remains
unchanged throughout the test. When the two time scales are com-

parable to each other, e.g., sM=sR
B ¼ 1, a small portion of mecha-

nophores is activated and then deactivated. The activation

efficiency exhibits a weak peak around time sR
B, after which the

chain forces are significantly relaxed. When sM=sR
B ¼ 105, activa-

tion response initially resembles to the case of sM=sR
B ¼ 1 until

the activation efficiency reaches a maximum point, after which
relaxation of chain forces (Fig. 3(c)) reveals itself by favoring the
reverse reaction pathway (i.e., merocyanine to spiropyran), conse-
quently reducing the activation efficiency of mechanophores to
almost zero.

For MCR viscoelastic elastomers, represented by Fig. 3(e), the
mechanical response and chemical reaction of the elastomer
behave as a superposition of those of pure elastic and relaxable
networks as shown in Figs. 3(g) and 3(h). Based on the parameters

above, we can calculate sR
A=s

R
B ¼ 2:4. Next, we investigate the

responses of the MCR viscoelastic elastomers with different ratios

of sM=sR
B. When sM=sR

B ¼ 1, network B behaves as a pure elastic
network for which chain forces remain constant (Fig. 3(g)) and
activation efficiency reaches to an equilibrium plateau (Fig. 3(h)).

When sM=sR
B ¼ 1, chain forces in network B get relaxed

(Fig. 3(g)) before triggering significant chemical activation in the
mechanophores coupled to this network (Fig. 3(h)). Therefore, the
activation response is mainly determined by the mechanophores
in network A, which monotonically increases to equilibrium.

When sM=sR
B ¼ 105, the mechanical relaxation in the relaxable

network (i.e., network B) is much slower than the activation of
mechanophores in this network, so that the overall activation effi-
ciency of the elastomer increases monotonically up to a maximum
point. After this point, the applied force on relaxable chains ceases
to favor the forward reaction over the reverse reaction, and
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activation efficiency declines to an equilibrium level determined
by the mechanophores in the pure elastic network.

From the above examples, it is evident that the interplays
of mechanical relaxation time scale sM and chemical reaction
time scales sR

A and sR
B can lead to complicated responses of the

elastomers, such as monotonic stress decrease yet nonmonotonic
chemical reaction over time during a stress–relaxation test. In
Sec. 4, we will use this model to characterize recent experimental
data on MCR viscoelastic elastomers and address unexplained ex-
perimental observations.

4 Comparison With Experimental Results

In this section, the model developed in the current paper will be
used to characterize and explain the experimental results recently
reported in Ref. [25]. As a brief description of the experiment, spi-
ropyrans were covalently linked to the center of polymethacrylate
(PMA) linear chains, and the viscous behavior of this elastomer
was studied at room temperature, above the glass transition tem-
perature of 12 �C. The elastomer was subjected to uniaxial tension
with various profiles of loading rates, and the stress and

fluorescence intensity in the elastomer were recorded simultane-
ously. The activation efficiency was then assumed to be propor-
tional to the captured fluorescence intensity, where the efficiency
of a fully activated elastomer after a longtime exposure to UV
irradiation was regarded as 100%. For uniaxial tension, we have
k1 ¼ k, k2 ¼ k3 ¼ 1=

ffiffiffi
k
p

in the elastomer, where k is the applied
stretch, and thus, the applied true strain is e ¼ lnk. Correspond-
ingly, the principal Cauchy stress in the elastomer can be calcu-
lated with Eq. (17) as r2 ¼ r3 ¼ 0 and r1 ¼ r, where

r ¼
k2 � 1

k

� �
3K

NAnAkT
1ffiffiffiffiffi
nA
p bA þ NBnBkT

1

K� ffiffiffiffiffi
nB
p bB

� �
(35)

In addition, we can divide the stress into contributions from net-
works A and B, respectively, i.e.

rA ¼
k2 � 1

k

� �
3K

NAnAkT
1ffiffiffiffiffi
nA
p bA (36a)

Fig. 3 A schematic of a mechanophore-coupled Maxwell element (a). In response to a constant stretch (b), the model
illustrated in (a) varies its chain force (c) and activation efficiency (d) over time. A schematic of a mechanophore-coupled
viscoelastic elastomer model (e). In response to a constant stretch (f), the model illustrated in (e) varies its chain force (g)
and activation efficiency (h) over time.
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rB ¼
k2 � 1

k

� �
3K

NBnBkT
1

K� ffiffiffiffiffi
nB
p bB (36b)

The Kuhn monomer length of PMA is taken as
b ¼ 14:7� 10�10 m [47] and the force-free reaction rates for
spiropyran as kf 0 ¼ 8:5� 10�6 s�1 and kr0 ¼ 4:9� 10�2 s�1 [41].
Other parameters of the model are determined by fitting it to the
experimental data of stress and activation responses. We find
nA ¼ 30 and NA ¼ 7� 1024 m�3 from the experimental
stress–strain data of the lowest rate of loading, i.e., 0.004 s�1

(Fig. 4(a)). The experimental stress–strain data of the highest rate
of loading, i.e., 0.1 s�1 (Fig. 4(a)) are used to estimate nB ¼ 3,
NB ¼ 5:6� 1025 m�3, and g ¼ 568 MPa � s. Total number of
Kuhn segments in a unit volume of elastomer is then calculated to
be nANA þ nBNB ¼ 3:8� 1026 m�3, which is on the same order as
the reported value of 6� 1026 m�3 in Ref. [25]. Moreover, the
reaction distance Dx, based on the experimental results for activa-
tion efficiencies (Fig. 4(b)), is fitted to be 2:7� 10�10 m, which is
in the range of reaction distances previously reported [25,41].

Since the mechanophores with a total number of c are homoge-
neously mixed in the elastomer, we assume the number of

mechanophores in each network is proportional to the volume
ratio of that network as

cA ¼ c
nANA

nANA þ nBNB
(37a)

cB ¼ c
nBNB

nANA þ nBNB
(37b)

From the above parameters, we can calculate cA=cB ¼ 1:25.
This MCR elastomer is first studied under monotonic displace-

ment loading. Figures 4(a) and 4(b) illustrate the stress–strain and
chemical activation responses of the elastomer corresponding to
three different stretch rates. It can be seen that the stress–strain
curves predicted by the model match consistently with the experi-
mental data (Fig. 4(a)). In addition, the stretch at which chemical
activation becomes noticeable is in good agreement between the
model and experiments (Fig. 4(b)). The activation stretches
coincide with the stretches that induce significant stiffening of
the elastomer, at which chain forces dramatically increase with
stretch.

Fig. 4 Comparisons of the model’s predictions with experimental results: (a) and (b) mono-
tonic loadings at various stretch rates, (c) and (d) a monotonic loading at a stretch rate of 0.02
s21 accompanied by a constant stretch of 8 held over 300 s. Time evolution of stress in net-
works A and B (e) and contribution of each network to the total activation efficiency (f) during
the loading–relaxation process.
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Next, the MCR viscoelastic elastomer is deformed to a maxi-
mum stretch of 8 with a stretch rate of 0.02 s�1 and then held
under this constant stretch for 300 s, following the experiment
reported in Ref. [25]. As the stretch increases, the principal
Cauchy stress r increases (Fig. 4(c)) as well as the activation effi-
ciency (Fig. 4(d)). However, when the stretch is held fixed, the
stress and activation efficiency do not follow the same trend. As
shown in Fig. 4, when the stretch is held fixed, the stress begins to
relax as expected, but the activation keeps increasing at a rate
which is comparable to the rate of activation during the loading
process. This nonintuitive experimental observation can be
explained by our model. Considering the chain forces in networks

A and B at the beginning of the relaxation process, we take �f A ¼
fAjt¼400 s and �f B ¼ fBjt¼400 s=2 in Eq. (33) to calculate sR

A ¼ 590 s

and sR
B ¼ 120 s. During relaxation, while the activation efficiency

of mechanophores in network B begins to decrease quickly
(Fig. 4(f)), the activation efficiency of mechanophores in network
A keeps increasing and advances to equilibrium over a time scale

around sR
A (Fig. 4(f)). As a result, during the relaxation process,

while the measured stress decreases over time, the total activation
efficiency of the elastomer keeps increasing due to the longer
reaction time scale of network A and higher portion of mechano-
phores in this network.

In the previous work of Silberstein et al. [25], the discrepancy
between the model’s predictions and experimental results was
mainly attributed to the inhomogeneity within the polymer net-
works. From the current work, it appears that the parallel-network
model illustrated in Fig. 1 can better capture this inhomogeneity.
The activation efficiencies in the relaxable and elastic networks
are different from each other and can be better tuned to represent
the experimental results.

5 Conclusions

We developed a theoretical model to investigate the mechano-
chemical response of MCR viscous elastomers. The proposed
model consists of mechanophore-coupled elastic and relaxable
networks. It was demonstrated that the interaction between
mechanical and reaction time scales and activation efficiencies of
mechanophores in pure elastic and relaxable networks influence
the total chemical activation response of the elastomer. The model
also suggested that the increase of activation during stress relaxa-
tion of a typical MCR viscous elastomer can be understood from
the ratio of reaction time scales associated with each network in
our model. The proposed theoretical model is simple and general
enough to represent various experimental data and observations.
The model can also provide guidelines for tuning the dynamic
response of a MCR elastomer via designed polymer networks.
While we use a simple viscoelastic model applicable to the
mode of deformation illustrated in Fig. 1(a), the theoretical frame-
work presented here on coupling mechanochemical reactions of
mechanophores with viscoelasticity can be readily adopted in
more sophisticated models of viscoelastic elastomers for general
deformation modes with multiple relaxation time scales
[28,48–50].
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