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Subject to an electric voltage, a layer of a dielectric elastomer reduces its thickness, so that the
voltage induces a high electric field. The positive feedback may cause the elastomer to thin down
drastically, resulting in an electrical breakdown. The authors show that the electromechanical
instability occurs when the Hessian of the free-energy function ceases to be positive definite. Their
calculation shows that the stability of the actuator is markedly enhanced by prestresses, agreeing
with existing experimental observations. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2768641�

Dielectric elastomer actuators have been intensely stud-
ied in recent years.1–13 Possible applications include medical
devices, energy harvesters, and space robotics.14–19 Figure 1
illustrates a planar actuator, consisting of a thin layer of di-
electric elastomer sandwiched between two compliant elec-
trodes. A battery applies a voltage between the electrodes,
and the two weights apply forces in the plane of the actuator.
In response to the change in the voltage, the actuator is ca-
pable of rapid and large deformation. Such an actuator, how-
ever, is susceptible to an electromechanical instability. As the
electric field increases, the elastomer thins down, so that the
same voltage will induce an even higher electric field. The
positive feedback may cause the elastomer to thin down
drastically, resulting in an electrical breakdown.

This electromechanical instability has been reviewed
recently,6 and has long been recognized in the electrical
power industry as a failure mode of polymer insulators.20,21

The existing analysis of the instability is based on a heuristic
model of Stark and Garton.20 It has been unclear how such a
model may account for more complex materials and loading
conditions. This letter formulates a general method to ana-
lyze this instability. We will show that the forces due to the
weights can markedly enhance the stability of the actuator.
This enhancement is known empirically2,4,6 but has so far not
been understood theoretically.

Our analysis is based on a recent formulation of the non-
linear field theory of deformable dielectrics.22–25 With the
reference to Fig. 1, the elastomer has the dimension L1L2L3
in the undeformed state. Subject to the electric voltage �
and mechanical forces P1 and P2, the elastomer deforms
to a homogeneous state with stretches �1, �2, and �3 as
well as gains a magnitude of electric charge Q on either
electrodes. The elastomer is taken to be incompressible, so
that �3=1/ ��1�2�.

Define the nominal electric field by the voltage in the
deformed state divided by the thickness of the elastomer

in the undeformed state, Ẽ=� /L3, and define the nominal
electric displacement as the charge on an electrode in the
deformed state divided by the area of the electrode in the

undeformed state, D̃=Q / �L1L2�. By contrast, the true electric
field is defined as the voltage divided by the thickness of
the elastomer in the current state, E=� / ��3L3�, and the
true electric displacement is defined as the charge divided

by the area of the electrode in the deformed state,
D=Q / ��1L1�2L2�. Denote the nominal stresses by
s1= P1 / �L2L3� and s2= P2 / �L1L3�.

The elastomer is taken to be an elastic dielectric, with

the free-energy function W��1 ,�2 , D̃�. The elastomer, the
weights, and the battery constitute a thermodynamic system,

characterized by three generalized coordinates �1 ,�2 , D̃, and
three control parameters P1 , P2 ,�. The free energy of the
system is

G = L1L2L3W��1,�2,D̃� − P1�1L1 − P2�2L2 − �Q . �1�

When the generalized coordinates vary by small amounts,

��1 ,��2 ,�D̃, the free energy of the system varies by
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FIG. 1. Layer of a dielectric elastomer coated with two compliant electrodes
and loaded by a battery of voltage � and by two weights P1 and P2. The
loads deform the elastomer from lengths L1, L2, and L3 to lengths �1L1,
�2L2, and �3L3, as well as induce an electric charge of magnitude Q on
either electrode.
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Thermodynamics dictates that a stable equilibrium state
should minimize G. In equilibrium, the coefficients of the
first-order variations vanish,

s1 =
�W
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�W

��2
, Ẽ =

�W

�D̃
. �3�

To ensure that this equilibrium state minimizes G, the sum of
the second-order variations must be positive for arbitrary

combination of ��1 ,��2 ,�D̃; that is, the Hessian,
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must be positive definite at the equilibrium state.
For a given set of control parameters, P1 , P2 ,�, Eq. �3�

is a set of nonlinear algebraic equations that determine the

equilibrium values of the generalized coordinates �1 ,�2 , D̃.
We now fix the forces P1 and P2 but vary the voltage �.
When the voltage is small, the Hessian is positive definite.
When the voltage reaches a critical value �c the Hessian

ceases to be positive definite and det�H�=0. The condition
det�H�=0, along with the equilibrium equations �Eq. �3��,
determine the critical values Ẽc, �1

c, �2
c, and D̃c for any given

prestresses s1 and s2.
To illustrate the method, consider a model material,

called the ideal dielectric elastomer, which has the free-
energy function,23
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The first term is the elastic energy, where � is the small-
strain shear modulus. The second term is the dielectric en-
ergy, where � is the permittivity.

The equilibrium equations �Eq. �3�� become
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and the Hessian �Eq. �4�� becomes
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In the special case when the elastomer is under equal
biaxial stresses, s1=s2=s, the stretches are also equal biaxial,
�1=�2=�. The equilibrium condition �Eq. �6�� becomes

D̃
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�
�5,
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=	�−2 − �−8 −
s

�
�−3. �8�

For a prescribed mechanical load, s /�, this pair of equations
provides the equilibrium relation between the normalized

voltage Ẽ /	� /� and the normalized charge D̃ /	��, using
the stretch � as a parameter.

Figure 2 shows the effects of the equal biaxial prestress.

At a fixed level of the prestress s1 /�, the function Ẽ�D̃� has
a peak �Fig. 2�a��. The left-hand side of each curve corre-
sponds to a positive-definite Hessian, the right-hand side cor-
responds to a non-positive-definite Hessian, and the peak is
determined by det�H�=0. By contrast, the true electric field

is a monotonic function of D̃ �Fig. 2�b��. As the prestress
increases, the critical nominal electric field decreases while
the critical true electric field increases. The actuation stretch

FIG. 2. �Color online� Behavior of a dielectric elastomer actuator under
several levels of equal biaxial prestresses: �a� nominal electric field vs nomi-
nal electric displacement, �b� true electric field vs nominal electric displace-
ment, and �c� nominal electric field vs actuation stretch. The critical points
for instability are marked as crosses.

061921-2 X. Zhao and Z. Suo Appl. Phys. Lett. 91, 061921 �2007�

Downloaded 10 Aug 2007 to 128.103.60.225. Redistribution subject to AIP license or copyright, see http://apl.aip.org/apl/copyright.jsp



is defined as �1 /�1
p, where �1

p is the prestretch due to the
weights in the absence of the voltage. The biaxial prestress
increases the critical actuation stretch �Fig. 2�c��.

In the absence of the prestress, maximizing Ẽ in Eq. �8�,
we obtain the critical stretch �c
1.26, which corresponds to
reduction in the thickness by �37%, and is consistent with
the maximum thickness strain of �40% observed

experimentally.1 The critical nominal electric field is Ẽc


0.69	� /�, which is high when the elastomer is stiff or
when the permittivity is low. For representative values
�=106 N/m2 and �=4�10−11 F/m, the critical nominal

electric field is Ẽc
108 V/m, which is on the same order of
magnitude of the reported breakdown fields.6

Figure 3 shows the effects of unequal biaxial prestresses,
with s2 /s1=1 corresponding to equal biaxial prestresses, and
s2 /s1=0 corresponding to uniaxial prestress. The critical

nominal electric field Ẽc decreases as s1 /� increases or as
s2 /s1 increases �Fig. 3�a��. The critical true electric field Ec

increases with s1 /� if s2 /s1�0; however, the uniaxial pre-
stretch keeps Ec at an almost constant level as s1 /� changes.
Figures 3�c� and 3�d� show the effects of prestresses on the
actuation stretches �1

c /�1
p and �2

c /�2
p. It is desirable for an

actuator to work under a low voltage and a low true electric
field, but generate a high actuation strain. In this connection,
note that when the actuator is uniaxially prestressed, the
critical true electric field is low, and the actuation stretch in

the direction normal to the prestress is large. This trend
agrees with the experimental observations.2,4

In summary, we have formulated a method to analyze
electromechanical stability of dielectric elastomer actuators.
While the method is applicable to free-energy function of
any form, we have applied the method to the ideal dielectric
elastomer. We show that the prestress can markedly increase
the actuation stretch. This method can be used to guide the
design of actuator configurations, as well as the design of
actuator materials.
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FIG. 3. �Color online� Effects of unequal biaxial prestresses on �a� the
critical nominal electric field, �b� the critical true electric field, �c� and �d�
and the critical actuation stretches.
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