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Measurement of shear moduli of elastomers 

The shear moduli of elastomers were measured by frequency sweep tests using a rheometer (TA 

instrument, USA).  Cross-hatch steel parallel plates with diameter of 8 mm were used for the tests. During 

the tests, the applied strain was controlled to oscillate from 0 to 0.05. When the cross-linker concentration 

in Sylgard is lower or higher than 1.2%, the measured storage modulus of the elastomer is 

correspondingly lower or higher than the loss modulus, and therefore it is in liquid-like or solid-like state, 

respectively [Figs. S1(a)-(d)]. We chose elastomers in solid-like states (i.e., cross-linker concentration 

higher than 1.2%) for studying the wrinkling-creasing transitions and measuring the critical electric fields 

of the instabilities [Fig. S1(e)]. Since we used quasi-static loading condition in the current paper, we 

regarded the storage moduli at near-zero frequency as the shear moduli of the elastomer [Fig. S1(e)]. The 

shear moduli of another elastomer Ecoflex were also measured using the same method [Fig. S1(f)]. 

mailto:xz69@duke.edu


 

2 

 

 

FIG. S1. The measured storage and loss moduli of Sylgard with cross-linker concentrations of 1%(a), 

1.2%(b), 1.6%(c) and 1.8%(d). The shear moduli of Sylgard (e) and Ecoflex (f) as functions of cross-

linker concentrations.
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Analysis of wrinkling instability in elastomers under electric fields 

The analysis of the wrinkling instability follows Ref [7]. We consider a region of the elastomer as 

shown in the inset of Fig. 2(a). For simplicity, the rigid substrate is not included in the current analysis. 

We assume a voltage  is applied on the elastomer film with thickness H . When the elastomer is at the 

flat state, the electric field in the elastomer film is homogeneous, with the electric field vector as 

 TE,0E , where HE  is the applied electric field.  

When the elastomer is at the initial wrinkled state, the surface of elastomer film undergoes a 

sinusoidal undulation with small amplitude  . The electric field in the elastomer film can be 

approximately expressed as  TE,0E , where    HE . The electrical stress in the elastomer 

can now be written as 
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Since H is small, 22

E can be linearly approximated as 
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For small deformation at the wrinkling initiation, the mechanical stress in the elastomer can be linearized 

as   Iuuσ pT

M   , where  Tyx uu ,u is the displacement vector and p is the hydrostatic 

pressure.  

 Stress equilibrium in the elastomer reads 0 σ , where EM σσσ  . From Eqs. (S1) and 

(S2), we can approximately obtain 0 Eσ , so the stress equilibrium can be reduced as  

02  pu                                          (S3) 

Boundary conditions can be written as 
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Eqs. (S3-5) constitute a boundary value problem with a homogenous solution and perturbed solutions, 

i.e., 
ph

uuu   and 
ph ppp  . The homogenous solution is  
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Eliminating the homogenous solution, the perturbed solutions are solved as follows.  

The incompressibility condition of the elastomer 0 u  permits a stream function  yx, such 

that (note 
p

uu   ) 
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We assume the wrinkling instability has sinusoidal morphology; therefore, we are looking for a perturbed 

solution for stream function and hydrostatic pressure with the form 

           kxypyxpkxyyx pp sin,,cos,   .                        (S8) 

The governing equation (Eq. S3) can be written as 
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with boundary conditions as 

       ypykYk
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where HEY 2 . Eq. (S9) can be solved as 
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The boundary conditions [Eqs. (S10) and (S11)] require  
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The existence of roots requires the determinant of the coefficient matrix in Eq. (S14) to be equal 

to zero. The resultant equation for the electric fields that satisfy the equilibrium condition is  
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As illustrated in Fig. 2(a), the normalized electric field E  first decreases and then increases Hk , 

and the minimum electric field that satisfies Eq. (S19) gives the critical electric field 
c

wrinkleE
 
for the 

wrinkling instability.  

Next, we prove that the viscoelastic effect of the elastomer film is not necessary to be considered 

to calculate the critical electric fields for the wrinkling instability. If the elastomer film is considered as a 

viscoelastic solid with a constitutive law written as 
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where   2uue
T  and   is the viscosity of the elastomer. We can repeat the above analysis by 

assuming 

            tt ekxyptyxpekxytyx  sin,,,cos,,                   (S21) 

where  is the growth rate of the wrinkle amplitude. Therefore, we obtain the equivalent equation for Eq. 

(S19) as  
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which only replaces  in Eq. (S19) with   . For viscoelastic elastomers under electric fields, the 

critical electric field is the minimum electric field that satisfies zero growth rate of the wrinkling 

amplitude, i.e., 0  [7, 8]. Therefore, the critical electric field calculated from Eq. (S22) for a 

viscoelastic elastomer is the same as the one from Eq. (S19) for the corresponding elastic elastomer.  
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An evidence of the concave pattern of creasing instability  

 
 

 

FIG. S2.  Surface topography of a highly deformed Sylgard layer by electric field. A 2% Sylgard films 

with a thickness ~10µm was subjected to an electric field much higher than the critical electric field for 

the creasing instability. As a result, the electric field highly deforms the polymer film after the creasing 

instability, inducing a permanently damaged pattern of concave craters. The pattern of craters was 

characterized by AFM, once the electric field was withdrawn.  



 

8 

 

 

Critical sizes of defects to nucleate creases under critical electric fields  

 

FIG. S3. The calculated critical sizes of defects to nucleate creases under critical electric fields. 

Elastomers with relatively high values of  H /  require
 
defects of relatively large sizes to nucleate 

creases under the critical electric field. If the defects are not present on elastomer surfaces in the 

experiments, a higher applied electric field than the calculated critical field is required to initiate creases. 

Therefore, the theory may underestimate the observed electric fields for creasing instability in elastomers 

with relatively high values of  H / . 
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Creasing-wrinkling transition in Ecoflex  

 

FIG. S4. Wrinkling-creasing instability transitions in Ecoflex films.  Wrinkling instability is observed in 

an Ecoflex film with mN04.0 , mH 210  , and kPa2.1 (a). By decreasing surface energy 

to mN7004.0  (b) or by increasing the film thickness to mH 359
 
(c), the creasing instability 

occurs instead.  
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Supplemental video  

Video S1. The evolution of surface morphology of a Sylgard film subject to a DC voltage with a 

ramping rate of 10Vs
-1

.  The cross-linker concentration of the film is 1% [Fig. S1(a)] and the thickness is 

m210 . 


