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This paper describes an approach to construct models of dielectric elastomers undergoing
dissipative processes, such as viscoelastic, dielectric and conductive relaxation. This
approach is guided by nonequilibrium thermodynamics, characterizing the state of a
dielectric elastomer with kinematic variables through which external loads do work, as
well as internal variables that describe the dissipative processes. Within this approach, a
method is developed to calculate the critical condition for electromechanical instability.
This approach is illustrated with a specific model of a viscoelastic dielectric elastomer,
which is fitted to stress-strain curves of a dielectric elastomer (VHB tape), measured
at various strain rates. The model shows that a higher critical voltage can be achieved
by applying a constant voltage for a shorter time, or by applying ramping voltage with
a higher rate. A viscoelastic dielectric elastomer can attain a larger strain of actuation
than an elastic dielectric elastomer.
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1. Introduction

Subject to a voltage across its thickness, a membrane of a dielectric elastomer
reduces in thickness and expands in area. This phenomenon is being developed as a
mechanism of electromechanical transduction, of large deformation, low cost, light
weight, high efficiency, and noise-free operation [Pelrine et al., 2000; Ha et al., 2006;
Zhao and Suo, 2010]. Emerging applications include soft robotics [Bar-Cohen, 2001;
Pelrine et al., 2002; O’Halloran et al., 2008], artificial limbs [Biddiss and Chau,

§Corresponding author.

203

http://dx.doi.org/10.1142/S1758825111000944


June 24, 2011 9:49 WSPC-255-IJAM S1758-8251 S1758825111000944

204 X. Zhao, S. J. A. Koh & Z. Suo

2008], energy harvesters [Pelrine et al., 2001; Koh et al., 2009], Braille displays
[Bar-Cohen, 2009], bio-stimulation pads [Carpi et al., 2009, 2010], and adaptive
optics [Beck et al., 2009; Kofod et al., 2009; Keplinger et al., 2010].

Suo [2010] has recently reviewed the theory of dielectric elastomers. Existing
models of dielectric elastomers mostly focus on elastic behavior [Anderson, 1986;
Goulbourne et al., 2005; McMeeking and Landis, 2005; Suo et al., 2008; Kofod,
2008], although viscoelastic behavior has also been explored [Christensen, 1980;
Drozdov, 1995; Bergström and Boyce, 1998; Lochmatter et al., 2007; Plante and
Dubowsky, 2007; Spathis and Kontou, 2008; Wissler and Mazza, 2008]. Experiments
have shown that viscoelasticity can significantly affect electromechanical transduc-
tion [Palakodeti and Kessler, 2006; Plante and Dubowsky, 2006, 2007; Lochmatter
et al., 2007; Jhong et al., 2007; Keplinger et al., 2008; Ha et al., 2007]. This paper
uses nonequilibrium thermodynamic to guide the development of models for dielec-
tric elastomers undergoing dissipative processes, such as viscoelastic, dielectric and
conductive relaxation. A method is described to calculate the critical condition for
electromechanical instability.

To illustrate the approach, a specific model is constructed for viscoelastic
dielectric elastomers. The model is fitted to existing stress-strain curves for VHB
measured at various strain rates [Plante and Dubowsky, 2006]. We show that the
electromechanical instability is significantly affected by patterns of the applied volt-
age. A higher critical voltage can be achieved by applying a constant voltage for a
shorter time, or by applying ramping voltage with a higher rate. Furthermore, vis-
coelastic elastomer can achieve larger deformation than an elastic elastomer. These
findings are consistent with experimental observations [Lochmatter et al., 2007;
Plante and Dubowsky, 2007; Keplinger et al., 2008].

2. Nonequilibrium Thermodynamics of a Dielectric Elastomer

An elastomer responds to applied loads by time-dependent, dissipative processes.
Viscoelastic relaxation may result from slippage between long polymers and rota-
tion of joints between monomers. Dielectric relaxation may result from distortion
of electron clouds and rotation of polar groups. Conductive relaxation may result
from migration of electrons and ions through the elastomer. This section describes
an approach to construct models of dissipative dielectric elastomers, guided by
nonequilibrium thermodynamics.

Figure 1 illustrates a membrane of a dielectric elastomer, sandwiched between
two compliant electrodes. The electrodes have negligible electrical resistance and
mechanical stiffness. In the reference state, the elastomer is subjected to no force
and voltage, and is of dimensions L1, L2 and L3. In the current state, at time t, the
elastomer is subjected to forces P1 and P2, and the two electrodes are connected to a
battery of voltage Φ through a conducting wire. In the current state, the dimensions
of the elastomer become l1, l2, and l3, the two electrodes accumulate electric charges
±Q, and the Helmholtz free energy of the membrane is F .
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Fig. 1. Schematics of a dielectric elastomer at (a) the reference state, and (b) a current state.

When the dimensions of the membrane change by δl1, δl2, and δl3, the mechani-
cal forces do work P1δl1 +P2δl2. When a small quantity of charge δQ flows through
the conducting wire, the battery does work ΦδQ. Thermodynamics requires that
the increase in the free energy should not exceed the total work done, namely,

δF ≤ P1δl1 + P2δl2 + ΦδQ. (1)

For the inequality to be meaningful, the small changes are time-directed: δf means
the change of the quantity f from a specific time to a slightly later time. The
thermodynamic inequality (1) will guide us to construct a model of the dielectric
elastomer.

Define stretches of the elastomer in the three directions by λ1 = l1/L1, λ2 =
l2/L2 and λ3 = l3/L3, the nominal stresses in the plane of the elastomer by
s1 = P1/(L2L3) and s2 = P2/(L1L3), the nominal electric displacement by
D̃ = Q/(L1L2), the nominal electric field Ẽ = Φ/L3, and the density of the
Helmholtz free energy by W = F/(L1L2L3). Divide both sides of (1) by the volume
of the membrane, L1L2L3, and the thermodynamic inequality becomes

δW ≤ s1δλ1 + s2δλ2 + ẼδD̃. (2)

The dielectric elastomer is taken to be incompressible, so that l1l2l3 = L1L2L3

and λ1λ2λ3 = 1. As a model of the dielectric elastomer, the free-energy density is
prescribed as a function:

W = W (λ1, λ2, D̃, ξ1, ξ2, . . .). (3)

We characterize the state of a dielectric elastomer by λ1, λ2 and D̃, along with
additional parameters (ξ1, ξ2, . . .). Inspecting (2), we note that λ1, λ2 and D̃ are the
kinematic parameters through which the external loads do work. By contrast, the
additional parameters (ξ1, ξ2, . . .) are not associated with the external loads in this
way. These additional parameters describe the degrees of freedom associated with
dissipative processes, and are known as internal variables. When the independent
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variables change by small amounts, (δλ1, δλ2, δD̃, δξ1, δξ2, . . .), the free-energy func-
tion changes by

δW =
∂W

∂λ1
δλ1 +

∂W

∂λ2
δλ2 +

∂W

∂D̃
δD̃ +

∑
i

∂W

∂ξi
δξi. (4)

Inserting (4) into (2), we rewrite the thermodynamic inequality as(
∂W

∂λ1
− s1

)
δλ1 +

(
∂W

∂λ2
− s2

)
δλ2 +

(
∂W

∂D̃
− Ẽ

)
δD̃ +

∑
i

∂W

∂ξi
δξi ≤ 0. (5)

As time moves forward, this thermodynamic inequality holds for any change in
the independent variables (λ1, λ2, D̃, ξ1, ξ2, . . .). We next specify a model consistent
with this inequality.

We assume that the system is in mechanical and electrostatic equilibrium, so
that in (5) the factors in front of δλ1, δλ2 and δD̃ vanish:

s1 =
∂W (λ1, λ2, D̃, ξ1, ξ2, . . .)

∂λ1
, (6)

s2 =
∂W (λ1, λ2, D̃, ξ1, ξ2, . . .)

∂λ2
, (7)

Ẽ =
∂W (λ1, λ2, D̃, ξ1, ξ2, . . .)

∂D̃
. (8)

Once the free-energy function W (λ1, λ2, D̃, ξ1, ξ2, . . .) is prescribed, (6)–(8) consti-
tute the equations of state of the dielectric elastomer.

Once the elastomer is assumed to be in mechanical and electrostatic equilibrium,
the inequality (5) becomes

∑
i

∂W (λ1, λ2, D̃, ξ1, ξ2, . . .)
∂ξi

δξi ≤ 0. (9)

This thermodynamic inequality may be satisfied by prescribing a suitable relation
between (δξ1, δξ2, . . .) and (∂W/∂ξ1, ∂W/∂ξ2, . . .). For example, we will adopt a
kinetic model of the type

dξi

dt
= −

∑
j

Mij
∂W (λ1, λ2, D̃, ξ1, ξ2, . . .)

∂ξj
. (10)

Here Mij is a positive-definite matrix, which may depend on the independent vari-
ables (λ1, λ2, D̃, ξ1, ξ2, . . .).

Within this approach, the elastomer dissipates energy through the changes in
the internal variables (ξ1, ξ2, . . .). The energy is dissipated at the rate

−
∑

i

∂W

∂ξi

dξi

dt
=

∑
i

Mij
∂W

∂ξi

∂W

∂ξj
. (11)

By construction, this rate is positive-definite.
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3. Electromechanical Instability

Subject to a voltage, a dielectric elastomer reduces its thickness, so that the same
voltage induces a higher true electric field. The positive feedback between the true
electric field and the thickness may cause the elastomer to thin down drastically,
resulting in electromechanical instability [Stark and Garton, 1955]. Following our
recent paper on the electromechanical instability of elastic dielectric elastomers
[Zhao and Suo, 2007], this section analyzes electromechanical instability of dissipa-
tive dielectric elastomers. Specifically, we consider the following scenario:

A loading program is prescribed by giving the forces and the voltage as functions
of time. In response, the elastomer evolves the variables (λ1, λ2, D̃, ξ1, ξ2, . . .) in
time. We seek a method to calculate the critical condition for the onset of the
electromechanical instability.

Let s1(t), s2(t) and Ẽ(t) be the prescribed program of the external loads.
Differentiating the thermodynamic equations of state (6)–(8) with respect to time,
we obtain that



ds1

dt
ds2

dt

dẼ

dt




=




∂2W

∂λ2
1

∂2W

∂λ1∂λ2

∂2W

∂λ1∂D̃

∂2W

∂λ2∂λ1

∂2W

∂λ2
2

∂2W

∂λ2∂D̃

∂2W

∂D̃∂λ1

∂2W

∂D̃∂λ2

∂2W

∂D̃2







dλ1

dt
dλ2

dt

dD̃

dt




+
∑

i




∂2W

∂λ1∂ξi

∂2W

∂λ2∂ξi

∂2W

∂D̃∂ξi




dξi

dt
. (12)

Because the functions s1(t), s2(t) and Ẽ(t) are prescribed, the loading rates
ds1/dt , ds2/dt and dẼ/dt are known. Furthermore, the rates of the internal vari-
ables, dξ1/dt , dξ2/dt , . . . , can be expressed as functions of (λ1, λ2, D̃, ξ1, ξ2, . . .) by
using the kinetic model (10). Consequently, (12) is a set of linear algebraic equations
for the rates of the kinematic variables dλ1/dt , dλ2/dt and dD̃/dt . Once solved, the
rates dλ1/dt , dλ2/dt and dD̃/dt are expressed as functions of (λ1, λ2, D̃, ξ1, ξ2, . . .).
These functions, together with the kinetic model (10), constitute a set of ordinary
differential equations that simultaneously evolve in time all the independent vari-
ables (λ1, λ2, D̃, ξ1, ξ2, . . .).

The set of linear algebraic equations for the rates of the kinematic variables,
(12), identify the Hessian of the free-energy function:

H =




∂2W

∂λ2
1

∂2W

∂λ1∂λ2

∂2W

∂λ1∂D̃

∂2W

∂λ2∂λ1

∂2W

∂λ2
2

∂2W

∂λ2∂D̃

∂2W

∂D̃∂λ1

∂2W

∂D̃∂λ2

∂2W

∂D̃2



. (13)

The linear algebraic equations are solvable if and only if detH �= 0. Consequently,
electromechanical instability sets in when the determinant of the Hessian matrix
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vanishes:

detH = 0. (14)

The critical condition (14) has the same form as our previous result for elastic
dielectric elastomers [Zhao and Suo, 2007]. However, the free-energy function for
a dissipative dielectric elastomer depends on the kinematic variables (λ1, λ2, D̃),
as well as on the internal variables (ξ1, ξ2, . . .). Consequently, the critical condi-
tion for the instability must be determined by simultaneously evolving in time all
the independent variables (λ1, λ2, D̃, ξ1, ξ2, . . .) according to the coupled ordinary
differential Eqs. (10) and (12), up to the time when detH = 0. Once the electrome-
chanical instability sets in, the elastomer film thins down drastically and expands in
area [Plante and Dubowsky, 2006]. The electromechanical instability is analogous
to the snap-through instability [Zhao et al., 2007].

4. A Viscoelastic Dielectric Elastomer

To represent a dissipative dielectric elastomer using the above approach, we need
to specify a set of internal variables (ξ1, ξ2, . . .), and then specify the functions
W (λ1, λ2, D̃, ξ1, ξ2, . . .) and Mij (λ1, λ2, D̃, ξ1, ξ2, . . .). The approach is illustrated in
this section by constructing a specific model of viscoelastic dielectric elastomer.

In response to an external load, an elastomer evolves toward a new state of
equilibrium by various dissipative processes. The time required for each dissipative
process to equilibrate is known as the relaxation time of the process. The time
it takes from applying an electric field to a dielectric to the polarization of the
dielectric is known as the dielectric relaxation time. The characteristic time for a
viscoelastic elastomer subject to a force reaches equilibrium state is the viscoelastic
relaxation time. The conductive relaxation time is related to the time for discharg-
ing a capacitor of a dielectric through the conduction of the dielectric. Experimen-
tal observations [Seki and Sato, 1995; Kestelman et al., 2000; Wissler and Mazza,
2007; Johansson and Robertson, 2007; Brosseau et al., 2008; Reffaee et al., 2009]
have shown that the dielectric relaxation-time for a dielectric elastomer is less than
0.1ms, the viscoelastic-relaxation time is on the order of minutes, while the con-
ductive relaxation may take hours. Here, we consider a dielectric elastomer whose
various relaxation processes take place over widely different time scales: viscoelastic
relaxation is much slower than dielectric relaxation, but is much faster than conduc-
tive relaxation. Consequently, to study the elastomer over a time scale in between
the dielectric relaxation time and the conductive relaxation time, we may assume
that dielectric relaxation has already reached equilibrium, conductive relaxation has
yet to occur, and the only active dissipative process is viscoelastic relaxation.

Figure 2 illustrates a basic experiment of viscoelastic relaxation. At time zero,
the elastomer is subjected to a sudden stretch. Subsequently, the stretch is held
constant, while the stress is recorded as a function of time. The stress rises instan-
taneously, and then relaxes as a function of time. The elastomer approaches a new
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Fig. 2. Relaxation of a viscoelastic elastomer.

state of equilibrium, and the stress asymptotes to a lower level. The characteristic
time for this process is known as the viscoelastic relaxation time, τ . The elas-
tomer may relax by several viscoelastic molecular processes with distinct relaxation
times. In order to focus on the main ideas, we will restrict our analysis to a single
viscoelastic relaxation time.

Viscoelastic relaxation is commonly pictured with an array of springs and dash-
pots, known as the rheological models; please refer to Silberstein and Boyce [2010]
for a recent review. Figure 3 illustrates one rheological model, including two springs
and one dashpot. When this model is subjected to a sudden stretch, the unrelaxed
modulus, µU , is represented by the sum of the stiffness of the two parallel springs.
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Fig. 3. A rheological model for a viscoelastic elastomer.

Over time, the viscous elongation of the dashpot gradually reduces the stress in
the bottom spring. At full relaxation, the relaxed modulus, µR, is represented by
the stiffness of the top spring. The relaxation time relates to the viscosity of the
dashpot η and the stiffness of the bottom spring as

τ = η/(µU − µR). (15)

Consistent with the rheological model in Fig. 3, the elastomer may be mod-
eled as two networks of polymers, one represented by the top spring in the model,
and the other by the spring and the dashpot at the bottom. The two networks
carry mechanical forces in parallel. The net deformation of both the networks are
described by in-plane stretches (λ1, λ2). For the network represented by the string
at the top, these stretches are produced by the spring. For the network represented
by the spring and the dashpot at the bottom, the net stretches (λ1, λ2) are due to
both the spring and the dashpot:

λ1 = λe
1ξ1, λ2 = λe

2ξ2, (16)

where (λe
1, λ

e
2) are the stretches due to the bottom spring, and (ξ1, ξ2) are stretches

due to the dashpot.
We represent the elasticity of each network by the neo-Hookean model, and write

the free-energy function as

W (λ1, λ2, D̃, ξ1, ξ2) =
µR

2
(λ2

1 + λ2
2 + λ−2

1 λ−2
2 − 3)

+
µU − µR

2
(λ2

1ξ
−2
1 + λ2

2ξ
−2
2 + λ−2

1 λ−2
2 ξ2

1ξ2
2 − 3)

+
D̃2

2ε
λ−2

1 λ−2
2 . (17)

In this expression, the first line represents the elastic energy of the network rep-
resented by the top spring, the second line represents the elastic energy of the
network represented by the bottom spring, and the third line represents the elec-
trostatic energy of the elastomer. We adopt the model of ideal dielectric elastomers
[Zhao et al., 2007], and assume that the electrostatic energy takes the same form
as a dielectric liquid, with a constant permittivity ε.
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Inserting (17) into (6)–(9), we obtain that

s1 = µR(λ1 − λ−3
1 λ−2

2 ) + (µU − µR)(λ1ξ
−2
1 − λ−3

1 λ−2
2 ξ2

1ξ2
2) − λ−3

1 λ−2
2 D̃2/ε, (18)

s2 = µR(λ2 − λ−3
2 λ−2

1 ) + (µU − µR)(λ2ξ
−2
2 − λ−3

2 λ−2
1 ξ2

2ξ2
1) − λ−3

2 λ−2
1 D̃2/ε, (19)

Ẽ = λ−2
1 λ−2

2 D̃/ε. (20)

These equations constitute the equations of state of the model specified by the
free-energy function (17).

We prescribe a kinetic model of the type (10). Specifically, we set dξ1/dt =
−η−1∂W/∂ξ1 and dξ2/dt = −η−1∂W/∂ξ2, where η is the viscosity. Using the free-
energy function (17), we write the kinetic model as

dξ1

dt
=

1
τ
(λ2

1ξ
−3
1 − λ−2

1 λ−2
2 ξ1ξ

2
2), (21)

dξ2

dt
=

1
τ
(λ2

2ξ
−3
2 − λ−2

1 λ−2
2 ξ2ξ

2
1). (22)

There is considerable flexibility in choosing kinetic models to fulfill the thermody-
namic inequality (9). One choice may be deemed more suitable than others for a
specific elastomer if it fits experimental data better. Our choice of the kinetic model,
as represented by (21) and (22), is intended to illustrate the general approach. A
more systematic search for a kinetic model for any specific dielectric elastomer is
beyond our intention here.

Equations (18)–(22) are fitted to experiment data obtained from a series of uni-
axial tension of VHB tested under different rates of stretch [Plante and Dubowsky,
2006]. Figure 4 compares the experimental data and the best fit. The values of
fitting parameters are found to be µU = 87.8kPa, µR = 22.8kPa, and τ = 200 s.

Fig. 4. The material model is fitted to experimental data of uniaxial tension of a dielectric
elastomer tested under various stretching rates.
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These values are consistent with the materials parameters reported in literature for
VHB [Wissler and Mazza, 2007; Plante and Dubowsky, 2007; Ha et al., 2007].

5. Deformation Induced by Applying a Voltage

This section applies the above model to a dielectric elastomer that is subjected
to time-dependent voltage Φ(t), but not to forces. Set in (18)–(20) Ẽ = Φ(t)/L3,
s1 = s2 = 0, λ1 = λ2 = λ and ξ1 = ξ2 = ξ, giving

εẼ2 = µR(λ−2 − λ−8) + (µU − µR)(λ−2ξ−2 − λ−8ξ4). (23)

Differentiate (23) with respect to time, and we obtain that

d(εẼ2)
dt

= [−2λ−3(µR + (µU − µR)ξ−2) + 8λ−9(µR + (µU − µR)ξ4)]
dλ

dt

− (µU − µR)(2λ−2ξ−3 + 4λ−8ξ3)
dξ

dt
. (24)

The critical condition detH = 0 corresponds to setting in (24) the factor in front
of dλ/dt to zero, giving

λc = 3
√

2
[

µR + (µU − µR)ξ4

µR + (µU − µR)ξ−2

] 1
6

. (25)

The kinetic model (19) becomes

dξ

dt
=

1
τ
(λ2ξ−3 − λ−4ξ3). (26)

The voltage is applied at time t = 0. The dashpot does not move instantaneously,
so that the initial value of the internal variable is ξ(0) = 1. Both the top and bottom
springs deform instantaneously, and λ(0) is determined by solving the nonlinear
algebraic Eq. (23) by setting ξ = ξ(0) and Ẽ = Ẽ(0). Equations (24) and (26)
evolve the functions λ(t) and ξ(t) up to the time when the stretch reaches the
critical value, λ(t) = λc. In calculations, we set µU/µR = 4, which is suggested by
fitting the experimental data, as described in Sec. 4.

Figure 5(a) illustrates a particular loading program. A voltage Φ is applied to
an elastomer at t = 0, and is held at a constant level subsequently. Thus, the nom-
inal electric field is prescribed at Ẽ = Φ/L3. For an elastic dielectric elastomer,
electromechanical instability occurs when Ẽ = 0.69

√
µ/ε, where µ is the shear

modulus of the elastomer [Zhao and Suo, 2007]. For a viscoelastic dielectric elas-
tomer, electromechanical instability will not occur if Ẽ < 0.69

√
µR/ε, but will take

place instantaneously if Ẽ ≥ 0.69
√

µU/ε. If the applied nominal electric field is
within the range of 0.69

√
µR/ε ≤ Ẽ < 0.69

√
µU/ε, electromechanical instability

will occur after some time.
Figure 5(b) shows the evolution of stretch of the dielectric elastomer under

various applied electric fields. We adopt the notation Ẽc = 0.69
√

µR/ε, and use it
to normalize the applied electric field. At t = 0, the elastomer is unrelaxed, and the
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Voltage, Φ

Time, t

(a)

(b)

Fig. 5. Time-dependent electrical actuation of dielectric elastomer under a fixed DC voltage;
(a) a voltage is suddenly applied and is subsequently held at constant, (b) the in-plane stretch as
a function of time.

voltage induces a small stretch. Over time, the elastomer relaxes, and the stretch
increases. For Ẽ < Ẽc, the elastomer can reach a new state of equilibrium. For
Ẽc ≤ Ẽ < Ẽc

√
µU/µR, the elastomer will suffer electromechanical instability, as

marked by the crosses. The time needed to reach the instability can be read from
Fig. 5(b).

As shown in Zhao and Suo [2007], the critical stretch of an elastic dielectric elas-
tomer is 3

√
2 ≈ 1.26. For a viscoelastic dielectric elastomer, however, a higher stretch

up to 1.85 can be achieved before the electromechanical instability (Fig. 5(b)). This
result is consistent with experimental observations on the increase of critical stretch
due to the viscoelasticity of dielectric elastomers [Keplinger et al., 2008]. Figure 5(b)
also shows that a lower applied field gives a longer time to failure and a higher
stretch. This finding is useful in designing more reliable dielectric elastomer actu-
ators with larger deformation of actuation. For example, one may apply a voltage
to give Ẽ ≈ 1.2Ẽc and maintain the voltage for τ (e.g., ∼200 s for VHB) to achieve
an actuation stretch 1.65. This is much higher than the critical stretch (1.26) of an
elastic dielectric elastomer.

Figure 6 illustrates another loading program: the voltage ramps up with time. We
write Ẽ = Ẽckt , where k characterizes the rate of the voltage. By solving Eqs. (24)



June 24, 2011 9:49 WSPC-255-IJAM S1758-8251 S1758825111000944

214 X. Zhao, S. J. A. Koh & Z. Suo

Voltage, Φ

Time, t

(a) (b)

(c) (d)

Fig. 6. (a) Applied voltage ramps up with time. (b) The critical nominal electric field. (c) The
time to failure. (d) The critical stretch.

and (26) with initial conditions ξ(0) = 1 and λ(0) = 1, we get the evolution of λ

and detH with time. As detH reaches 0, we record the nominal electric field Ẽ

for electromechanical instability [Fig. 6(a)] and corresponding time to failure tfail
[Fig. 6(b)] and critical stretch λC [Fig. 6(c)]. It can be seen that voltage applied at
a lower rate gives a lower nominal electric field at the electromechanical instability.
By selecting an appropriate ramping rate and time for the applied voltage, one can
achieve a higher stretch with a viscoelastic dielectric elastomer than with an elastic
dielectric elastomer.

6. Conclusions

We use nonequilibrium thermodynamics to guide the development of models of
dissipative dielectric elastomers. The approach is illustrated by a specific model
of a viscoelastic dielectric elastomer, which is fitted to existing experimental data.
Viscoelasticity of a dielectric elastomer greatly affects electromechanical stability
of the elastomer. By controlling the time-dependence of the applied voltage, one
can make a viscoelastic dielectric elastomer achieve larger deformation of actuation
than an elastic dielectric elastomer. The approach demonstrated here can easily be
adapted to analyze homogeneous deformation of viscoelastic dielectric elastomers
under other loading conditions and boundary conditions. While viscoelasticity may
be represented by an array of springs and dashpots, dielectric relaxation may be
represented by an array of resistors and capacitors. To model electric conduction,
however, we will need to combine charge transport and large deformation, in a way
similar to the theory of polyelectrolyte gels [Hong et al., 2010]. It is hoped that
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the approach outlined in this paper will be used in designing experiments to probe
time-dependent phenomena in dielectric elastomers transducers.
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