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This paper studies the poroelastic behavior of an alginate hydrogel by a combination of theory and
experiment. The gel—covalently crosslinked, submerged in water, and fully swollen—is suddenly
compressed between two parallel plates. The gap between the plates is held constant subsequently,
and the force on the plate relaxes while water in the gel migrates. This experiment is analyzed by
using the theory of linear poroelasticity. A comparison of the relaxation curve recorded in the
experiment and that derived from the theory determines the elastic constants and the permeability of
the gel. The material constants so determined agree well with those determined by using a recently
developed indentation method. Furthermore, during relaxation, the concentration of water in the gel
is inhomogeneous, resulting in tensile hoop stresses near the edge of the gel, and possibly causing
the gel to fracture. © 2010 American Institute of Physics. �doi:10.1063/1.3517146�

I. INTRODUCTION

A flexible, covalent network of polymers can imbibe a
large quantity of a solvent, resulting in a gel. Gels constitute
many tissues of animals and plants, and are used in diverse
applications, including drug delivery,1,2 microfluidics,3,4 tis-
sue engineering,5,6 oilfield management,7,8 and food
processing.9,10 The mechanical behavior of gels11–13 and gel-
like tissues �e.g., cartilage�14,15 is time-dependent. The net-
work enables large and reversible deformation, while the sol-
vent in the gel migrates. The concurrent deformation of the
network and migration of the solvent is known as poroelas-
ticity.

We have recently reported experiments on an alginate
hydrogel pressed by a flat plate16 and by an indenter.17 In
each experiment, a disk of an alginate hydrogel is covalently
crosslinked, submerged in water or aqueous solution, and
fully swollen. The gel is pressed by suddenly pressing the
plate �Fig. 1�a�� or the indenter �Fig. 1�b��. The displacement
is kept constant subsequently �Fig. 1�c��, while the force on
the plate or the indenter is recorded as a function of time
�Fig. 1�d��. The force instantly rises and then relaxes, as
water in the gel migrates and the gel approaches a new state
of equilibrium. This relaxation curve is used to deduce ma-
terial constants of the gel—the shear modulus and Poisson’s
ratio of the gel, as well as the permeability of the solvent
through the network.

The main object of this paper is to ascertain that the two
methods—compression and indentation—yield the same ma-
terial constants for the same gel. To minimize the variability
of the gel used in the two experiments, here we conduct both
experiments by using the alginate hydrogel prepared in the
same batch. The material constants of the gel are determined
by comparing the relaxation curves obtained from the experi-

ments to those derived from the theory of poroelasticity. Our
previous paper17 has reported the theoretical relaxation curve
for indentation, and this paper will derive the theoretical re-
laxation curve for compression. Furthermore, we will de-
scribe the theoretical prediction of transient fields in the
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FIG. 1. �Color online� �a� A disk of a gel is submerged in a solvent, and is
compressed by frictionless, impermeable, rigid plates. �b� A disk of a gel is
submerged in a solvent, and a conical indenter is pressed into the gel. �c� In
both experiments, the displacement is suddenly prescribed and subsequently
held fixed. �d� The force is recorded as a function of time.
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compressed gel. In particular, the transient hoop stress is
tensile near the edge of the gel, and may cause the gel to
fracture.

II. GOVERNING EQUATIONS OF POROELASTICITY

This section writes Biot’s theory of poroelasticity18 in a
form suitable for the analysis of the compression test. The
presentation will be brief; details concerning application of
the theory to polymer gels may be found elsewhere �e.g.,
Refs. 12, 13, 19, and 20�. Figure 1 illustrates a disk of a gel,
radius a and thickness b, along with the cylindrical coordi-
nates �r ,� ,z�. The disk is pressed vertically, and the gel is
slippery between the two plates, so that the disk is taken to
deform under the condition of generalized plane strain. The
axial strain is homogeneous in the gel but can vary with
time. Let �z�t� be the axial strain of the gel as a function of
time. The deformation of the disk is taken to be axisymmet-
ric, so that the radial displacement u is independent of z and
� but is a function of time and radial position. Write the field
of the radial displacement as u�r , t�. The hoop strain and the
radial strain are

�� = u/r , �1�

�r = �u/�r . �2�

All the shear strains vanish.
The plates are impermeable to the solvent, and the sol-

vent in the gel migrates in the radial direction. Let J�r , t� be
the flux of the solvent �i.e., the number of solvent molecules
crossing unit area in a reference state per unit time�. Let
C�r , t� be the field of the concentration �i.e., the number of
solvent molecules per unit volume of the gel in the reference
state�. The number of solvent molecules is conserved:

�C

�t
+

��rJ�
r � r

= 0. �3�

The gel is in mechanical equilibrium at all time. The
radial stress �r�r , t� and the hoop stress ���r , t� satisfy

��r

�r
+

�r − ��

r
= 0. �4�

The axial stress �z�r , t� gives rise to the compressive force:

F�t� = − 2��
0

a

�zrdr . �5�

We adopt the sign convention that the compressive force F is
positive. All components of the shear stresses vanish.

The gel, however, is not in diffusive equilibrium. The
chemical potential of the solvent in the gel is a time-
dependent field ��r , t�. The gradient of the chemical poten-
tial �� /�r drives the flux of the solvent. The two quantities
are taken to be linearly related, written in the form

J = −
k

��2

��

�r
, �6�

where � is the viscosity of the solvent and � the volume per
solvent molecule. Both � and � are taken to be the values

for the pure liquid solvent �e.g., for water �=1.0
	10−3 N s m−2 and �=3.0	10−29 m3�. Consequently, �6�
defines a phenomenological quantity, k, which is known as
the permeability and has the dimension of length squared.

At any time, each differential element of the gel is in a
state of thermodynamic equilibrium. A reference state is as-
signed when the gel is stress-free and the solvent in the gel is
in equilibrium with the pure liquid solvent. In the reference
state, the strains of the gel are set to be zero, the chemical
potential of the solvent in the gel is set to be zero, and the
concentration of the solvent in the gel is denoted by C0.
When the gel is subject to a state of stress, the gel is in
another state of equilibrium, in which the gel deforms and
the solvent in the gel may no longer be in equilibrium with
the pure liquid solvent. This state of equilibrium of the gel is
characterized by the stresses ��r ,�� ,�z�, the strains
��r ,�� ,�z�, the concentration C, and the chemical potential of
the solvent �. These thermodynamic variables are connected
through the equations of state, as described below.

Because the stress in a gel is typically small, the poly-
mers and the solvent molecules are commonly assumed to be
incompressible. Consequently, the increase in the volume of
the gel is entirely due to the volume of the absorbed solvent:

�r + �� + �z = ��C − C0� . �7�

The gel is assumed to be isotropic, and the stresses are as-
sumed to be linear in strains. Under these assumptions, the
equations of state take the form17

�r = 2G��r +



1 − 2

��r + �� + �z�� −

�

�
, �8�

�� = 2G��� +



1 − 2

��r + �� + �z�� −

�

�
, �9�

�z = 2G��z +



1 − 2

��r + �� + �z�� −

�

�
, �10�

where G is the shear modulus and 
 Poisson’s ratio. When
the gel is constrained by rigid and permeable walls in all
directions, such that all strains vanish, an increase in the
chemical potential of the solvent gives rise to a hydrostatic
pressure, � /�.

The above equations specify the theory of poroelasticity.
A combination of these equations gives the governing equa-
tions for the fields C�r , t�, u�r , t�, and ��r , t�:

��ru�
r � r

+ �z�t� = ��C − C0� , �11�

2�1 − 
�
�1 − 2
�

�

�r
� ��ru�

r � r
� =

��

G� � r
, �12�

�C

�t
=

D�

r � r
	 r � C

�r

 , �13�

with the diffusivity given by
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D =
2�1 − 
�Gk

�1 − 2
��
. �14�

Equation �13� takes the familiar form of the diffusion equa-
tion. In poroelasticity, however, this diffusion equation can-
not be solved by itself, because the boundary conditions typi-
cally involve the chemical potential and the displacement.
Nonetheless, �13� indicates that over time t a disturbance
diffuses over a length �Dt.

Throughout the experiment, the gel is submerged in a
pure liquid solvent, whose chemical potential is set to be
zero. Before being compressed, the gel is in equilibrium with
the external solvent—a state taken to be the reference state of
the gel. At time t=0, a compressive strain of magnitude � is
suddenly prescribed by pressing the rigid plates, and this
strain is held constant in subsequent time. That is, �z�t�=−�,
for t�0. We adopt the sign convention that ��0 for com-
pression.

The boundary conditions on the edge of the disk are
obtained by assuming that the gel is locally in equilibrium
with the external solvent at all time. Thus, the chemical po-
tential of the solvent in the gel, on the edge, equals that of
the external solvent at all time:

��a,t� = 0. �15�

Furthermore, the radial stress on the edge of the gel vanishes
at all time:

�r�a,t� = 0. �16�

Inserting �15� and �16� into �8�, we obtain a boundary con-
dition in terms of the displacement:

�1 − 
�
�u

�r
�a,t� + 
�u�a,t�

r
− �� = 0. �17�

III. SHORT-TIME AND LONG-TIME LIMITS

The compression causes a portion of the solvent in the
gel to migrate out, so that the field in the gel evolves with
time. We first consider the short-time limit, t=0, instanta-
neously after the gel is compressed with the strain �. The gel
undergoes a homogeneous deformation. Instantaneously after
the gel is compressed, the solvent in the gel has no time to
migrate so that C�r ,0�=C0, and the volume of the gel does
not change, �r+��+�z=0. The axial strain is �z=−�, and the
radial and hoop strains are

�r�r,0� = ���r,0� =
�

2
. �18�

The radial displacement is

u�r,0� =
1

2
�r . �19�

Instantaneously after compression, the radial and the hoop
stresses are zero, �r�r ,0�=���r ,0�=0. The solvent in the gel
is out of equilibrium with the external solvent: the chemical
potential of the solvent in the gel is homogeneous but is not
zero. Setting �r�r ,0�=0 and �r+��+�z=0 in Eq. �8�, we ob-
tain that

��r,0� = �G� . �20�

From �10� we obtain the axial stress

�z�r,0� = − 3G� . �21�

Recall that the edge of the gel is assumed to be in local
equilibrium with the external solvent at all time, so that
��a ,0�=0 instantaneously after compression. This boundary
value is unequal to the value in the interior of the gel,
��r ,0�=�G�. Such a discontinuity is common in initial/
boundary-value problems subject to suddenly prescribed ini-
tial conditions. We now examine the consequence of this
discontinuity in the chemical potential. Geometric compat-
ibility requires that ���a ,0�=� /2, while mechanical equilib-
rium requires that �r�a ,0�=0. Inserting these conditions,
along with ��a ,0�=0, into �8�–�10�, we obtain the instanta-
neous radial strain

�r�a,0� =

�

2�1 − 
�
, �22�

the hoop stress

���a,0� =
1 − 2


1 − 

G� , �23�

and the axial stress

�z�a,0� = −
2 − 


1 − 

G� . �24�

The radial strain on the edge �22� differs from that in the
interior of the gel, �r�r ,0�=� /2. Similarly, the hoop and
axial stresses also differ from their counterparts in the inte-
rior of the gel. Also note that the instantaneous hoop stress
�23� on the edge of the gel is tensile.

We next consider the long-time limit, t→. After being
compressed for a long time, the gel reaches a new state of
equilibrium: the chemical potential of the solvent every-
where in the gel equals that in the external solvent, ��r ,�
=0. The radial and hoop stresses vanish, �r�r ,�=���r ,�
=0. From Eqs. �8� and �9�, we obtain the radial and the hoop
strains:

�r�r,� = ���r,� = 
� . �25�

The radial displacement is

u�r,� = 
�r . �26�

Equation �10� gives the axial stress

�z�r,� = − 2�1 + 
�G� . �27�

A comparison of �18� and �25� shows that, as the solvent
migrates out the gel, the transverse expansion reduces from
the instantaneous value �r�r ,0�=���r ,0�=� /2, and ap-
proaches the value of a new state of equilibrium, �r�r ,�
=���r ,�=
�. Thus, Poisson’s ratio characterizes the ch-
emomechanical interaction of the gel. Poisson’s ratio is re-
stricted in the interval −1�
�1 /2 by the requirement that
the free-energy density is positive definite. When a gel is
subject to compression and reaches a new state of equilib-
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rium with the external solvent, no solvent in the gel migrates
out if 
→1 /2, or portion of the solvent in the gel migrates
out if −1�
�1 /2.

IV. TRANSIENT FIELDS

The partial differential Eqs. �11�–�13�, along with the
boundary conditions �15� and �16� and the initial conditions
�19� and �20�, can be solved by the method of separation of
variables. Consider displacement fields of,

u�r,t� = 
�r + f�r�exp�− �t� . �28�

The first term is the long-time limit, and the second term
represents the transient deviation from the new state of equi-
librium. Inserting �28� into �11� and �13�, we obtain that

Dd

dr
�d�rf�

rdr
� + �f = 0, 0 � r � a . �29�

The solution to this ordinary differential equation is the
Bessel functions. Let Jm��� be the Bessel function of order
m. The displacement field that solves �11�–�13�, �15�, �16�,
�19�, and �20� is

u�r,t�
a�

= 
	 r

a

 + �

n=1



BnJ1	�n
r

a

exp	− �n

2Dt

a2 
 . �30�

The eigenvalues �n are determined by �17�, namely,

�1 − 
��nJ1���n� + 
J1��n� = 0. �31�

The coefficients Bn are determined by the initial condition
�19�, giving

Bn =
�1 − 2
��1 − 
�2�n

�n
2�1 − 
�2 − �1 − 2
�

J2��n�
J1

2��n�
. �32�

Figure 2 plots the displacement field at several times. Instan-
taneously after the gel is compressed, at Dt /a2=0, the disk
expands in the radial direction, and the displacement is linear
in the radius, u�r ,0�=�r /2. As time proceeds, solvent gradu-
ally migrates out the gel, and the disk shrinks. When Dt /a2

→, the gel attains the new state of equilibrium, u�r ,0�
=
�r. Figure 2 indicates that the gel nearly attains the new
state of equilibrium when Dt /a2=1.

Inserting the displacement field �30� into �12�, and using
the boundary condition ��a , t�=0, we obtain the field of
chemical potential:

��r,t�
G��

=
2�1 − 
�
1 − 2


�
n=1



Bn�n�J0	�n
r

a

 − J0��n��

	exp	− �n
2Dt

a2 
 . �33�

Figure 3 plots the chemical potential field at several times.
Immediately after compression, the chemical potential of the
solvent inside the gel is homogenous, ��r ,0�=�G�. This
chemical potential exceeds the chemical potential of solvent
outside the gel, �=0, and drives the solvent to migrate out.
The chemical potential of the solvent in the gel at the edge of
the disk is taken to equal that in the external solvent at all
time, ��a , t�=0. As time proceeds, the chemical potential of
the solvent in the gel gradually decreases. In the long-time
limit, the compressed gel equilibrates with the external sol-
vent, and the chemical potential of the solvent in the gel
approaches zero.

Inserting the displacement field �30� and the chemical
potential field �33� into the equations of state �8�–�10�, we
obtain the stresses:

��

G�
= �

n=1
2Bna

r
J1	�n

r

a

 + �n�− J0	�n

r

a



+
1 − 


1 − 2

J0��n���exp	− �n

2Dt

a2 
 , �34�

�r

G�
= �

n=1
2Bn�−

a

r
J1	�n

r

a

 +

1 − 


1 − 2

�nJ0��n��

	exp	− �n
2Dt

a2 
 , �35�

�z

G�
= − 2�
 + 1� + �

n=1
2Bn�n�− J0	�n

r

a



+
1 − 


1 − 2

J0��n��exp	− �n

2Dt

a2 
 . �36�
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FIG. 2. �Color online� The distribution of the radial displacement at several
times.
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Figure 4�a� plots the distribution of the hoop stress at
several times. Instantaneously after compression, the solvent
in the gel has no time to migrate, so that no hoop stress
develops in the interior of the disk. However, a tensile hoop
stress develops instantaneously at the edge of the disk, as
discussed before. After the gel is compressed for some time,
solvent leaves the gel gradually, so that the concentration
becomes inhomogeneous: the concentration of the solvent
near the edge is lower than that around the center. As time
proceeds, the tensile stress reduces magnitude but spreads
over a larger region. Toward the center of the disk, the hoop
stress is compressive. In the long-time limit, the hoop stress
everywhere in the gel vanishes.

Figure 4�b� plots the distribution of the radial stress at
several times. The radial stress at the edge vanishes at all
time, as dictated by the boundary condition. After the gel is
compressed by the plates, the solvent migrates out, initially
from the region near the edge of the disk. Consequently, the
radial stress around the center of the disk is compressive.

The magnitude of the compressive radial stress initially rises
and then falls. In the long-time limit, the radial stress every-
where vanishes.

Figure 4�c� plots the distribution of the axial stress at
several times. As discussed before, instantaneously after the
gel is pressed, the axial stress is �z�a ,0�=−G��2−
� / �1
−
� at the edge of the disk, and is �z�r ,0�=−3G� in the
interior of the disk. These two levels of the axial stress are
unequal, so long as 
�0.5. The magnitude of the axial stress
at the edge of the disk increases as time progresses. The
magnitude of the axial stress at the center of the disk initially
rises and then falls. After some time, the axial stress homog-
enizes in the disk, and approaches the long-time limit
�z�r ,�=−2�1+
�G�.

V. USING RELAXATION CURVES TO DETERMINE
PROPERTIES OF GELS

Integrating the axial stress over the area of the disk, we
obtain the axial force as a function of time:

F�t�
G��a2 = 2�
 + 1� − �

n=1



Bn	− 4J1��n�

+
2�1 − 
�
1 − 2


�nJ0��n�
exp	− �n
2Dt

a2 
 . �37�

The short-time limit is

F�0� = 3�G�a2. �38�

The long-time limit is

F�� = 2��1 + 
�G�a2. �39�

Figure 5 plots the relaxation curve �37� in the form

F�t� − F��
F�0� − F��

= f	
,
Dt

a2 
 , �40�

The ratio on the left-hand side measures how far the gel is
away from the state of equilibrium. The ratio depends on
Poison’s ratio weakly, as indicated in Fig. 5.

Covalently crosslinked alginate hydrogels are prepared
following the protocol previously described.21 The gel is sub-
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FIG. 4. �Color online� The evolution of �a� the hoop stress, �b� the radial
stress, and �c� the axial stress.

FIG. 5. �Color online� The compressive force relaxes as a function of time.
The relaxation curve varies with Poisson’s ratio somewhat.
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merged in distilled water for 24 h until it is fully swollen.
From a piece of the gel, we punch out three disks of radii 3,
4, and 5 mm. These disks are then pressed with a stainless
steel plate. The plate first approaches the surface of the disk
with a speed of 2 �m /s until the measured force starts to
increase. At this point, the gap between the top and bottom
plates is viewed as the thickness of the disk, which is 7.71,
7.82, 7.65 mm, of 3 mm radius, 4 mm radius, and 5 mm
radius sample, respectively. Each disk is subject to a 20%
vertical compressive strain. The total rising time is about 10
s, which is negligible compared to the relaxation time �about
3 to 8 h�. While the vertical strain is held at the fixed value,
the force on the plate is recorded as a function of time by
using the AR rheometer from TA Instruments. The resolution
of the force is 0.005 N, and data are taken at the rate of 360
points per second.

The covalently crosslinked alginate hydrogels are quite
brittle, and sometimes fracture during the experiment �Fig.
6�. The fracture mechanics of gels is interesting in its own
right but will not be pursued in this paper. The data reported
below are taken from experiments in which no fracture is
observed.

Figure 7�a� plots the relaxation curves measured experi-
mentally from the three disks. In each case, the force rises
sharply as the plate is pressed. Subsequently, the plate is held
at the fixed position, while the force relaxes and approaches
a new state of equilibrium. The magnitude of the force, as
well as the relaxation time, is larger when the radius of the
disk is larger. Once the force is divided by the area of the
disk �a2, and the time is divided by a2, the relaxation curves
measured from the disks of the three radii collapse into a
single curve �Fig. 7�b��. This behavior is consistent with the
prediction of the theory of poroelasticity. The nominal
stress—the force divided by the area of the disk—relaxes as
the solvent migrates out from the edge of the gel. The relax-
ation time is proportional to the radius of the disk squared.

By comparing the relaxation curve measured experimen-
tally with that derived from the theory of poroelasticity, we
can determine the shear modulus, Poisson’s ratio, and the
diffusivity. In the short-time limit, a comparison of the ex-
perimental data F�0� /�a2=20.5 kPa and the theoretical for-
mula F�0� /�a2=3G� gives the shear modulus G
=34.2 kPa. In the long-time limit, a comparison of the ex-
perimental data F�� /F�0�=0.82 and the theoretical formula
F�� /F�0�=2�1+
� /3 gives Poisson’s ratio 
=0.23. The re-
laxation curve calculated from the theory of poroelasticity
overlaps with the relaxation curves experimentally measured
from the three disks when the diffusivity is fit to D=6.2
	10−9 m2 /s �Fig. 7�b��.

In a recent paper,17 we have used a conical indenter to
characterize the alginate hydrogel. As illustrated in Fig. 1,
the gel is submerged in water and is fully swollen. The coni-
cal indenter, of half included angle �, is suddenly pressed
into the gel and is subsequently held at a fixed depth h. The
force on the indenter is measured as a function of time. This
test has been analyzed within the theory of poroelasticity,17

and the relevant results are summarized here. The radius of
contact is given by

a =
2

�
h tan � . �41�

In the short-time limit, solvent in the gel has no time to
migrate, the gel behaves like an incompressible elastic solid,
and the force on the indenter is given by

F�0� = 4Gah . �42�

In the long-time limit, portion of the solvent in the gel has
migrated out, the gel has attained a new state of equilibrium
with the external solvent, and the force on the indenter is
given by

F�� = 2Gah/�1 − 
� . �43�

For the gel to evolve from the short-time limit toward the
long-time limit, the solvent in the gel under the indenter must
migrate. The relevant length in this diffusion-type problem is

FIG. 6. �Color online� Photos of fractured alginate hydrogel caused by
compression.

FIG. 7. �Color online� A disk of an alginate hydrogel is compressed between
parallel plates, while the force on the planes is recorded as a function of
time. �a� Relaxation curves obtained by using disks of an alginate hydrogel
of three radii. �b� Each of the three relaxations curves is plotted again, with
the force divided by the area of the disk, and the time divided by the radius
squared. Also plotted is the relaxation curve obtained from the theory of
poroelasticity.
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the radius of contact, a, and the normalized time takes the
form �=Dt /a2. The function F�t� obeys

F�t� − F��
F�0� − F��

= g��� . �44�

The dimensionless ratio on the left-hand side of �44� is a
measure of how far the gel is away from the new state of
equilibrium. The function g��� is determined by solving the
poroelastic boundary-value problem. Our previous work in-
dicates that g is a function of the single variable �, given by

g��� = 0.493 exp�− 0.822��� + 0.507 exp�− 1.348�� .

�45�

To minimize the variability of the material, we make the
alginate hydrogels for both tests—compression and
indentation—in the same batch. The solutions are poured
into a plastic mold of 3 cm radius and 2 cm thickness. After
gelation, the gel is submerged in distilled water for 48 h until
it is fully swollen. We then press an aluminum indenter of
half included angle �=70° into the gel to a fixed depth. The
force on the indenter is recorded as a function of time by
using a custom-built load frame with a force resolution of
0.01 N and a displacement resolution of 1 �m. The indent-
ers are programmed to approach the surface of the sample at
the speed of 2 �m /s, until the slope of the recorded force-
displacement curve start to be positive. The time used to
press the indenter into the alginate gels �10 s� is much shorter
than the relaxation time �3 to 16 h�, so that the effect of the
initial loading stage is minimized.

Figure 8�a� shows the measured relaxation curves re-

corded at the three depths of indentation. In each case, the
force rises sharply, and then relaxes as the gel approaches a
new state of equilibrium with the external solvent. The mag-
nitude of the force, as well as the relaxation time, is larger
when the depth of indentation is larger. A comparison of the
experimental value F�0� /ah=130 kPa and the analytical for-
mula F�0� /ah=4G gives G=32.5 kPa. A comparison of the
experimental value F�0� /F��=1.56 and the analytical for-
mula F�0� /F��=2�1−
� gives Poisson’s ratio 
=0.22.

Figure 8�b� plots the relaxation curves measured with the
three depths indentation the in a dimensionless form. The
three curves collapse into a single curve. Furthermore, these
curves overlap with the relaxation curve calculated with the
theory of poroelasticity, g��� in �45�, when the diffusivity is
fit to the value D=6.6	10−9 m2 /s.

Comparing the material properties measured by com-
pression and indentation, we note 5.2% difference in the
shear modulus, 4.6% difference in Poisson’s ration, and 6%
in the diffusivity. This excellent agreement lends support to
both tests. The two tests have their own advantages and dis-
advantages. The compression test requires the sample to be
fabricated with perfectly parallel top and bottom surfaces,
which may be difficult in practice. This concern is absent for
the indentation test because the starting point of the measure-
ment is readily detected for conical or spherical indenters.
The indentation test, however, requires the thickness of the
sample to be more than ten times larger than the depth of
indentation. This requirement might be difficult to satisfy in
practice.

VI. CONCLUDING REMARKS

The compression test is analyzed within the theory of
poroelasticity. By comparing the relaxation curve derived
from the theory to that measured in the experiment, we ob-
tain the shear modulus, Poisson’s ratio and the permittivity
of a covalently crosslinked alginate hydrogel. The material
constants so determined agree well with those obtained from
a recently developed indentation method. The agreement
lends support to both methods. Furthermore, our calculation
shows that, as the compressed gel relaxes, the concentration
of the solvent in the gel is inhomogeneous, resulting in ten-
sile hoop stresses near the edge of the gel. While fracture is
indeed often observed in our experiments, the mechanics of
fracture awaits clarification.
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