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A layer of a dielectric elastomer expands its area when a voltage is applied across its thickness. The
layer can be programed to deform in three dimensions by using patterned prestretches, electrodes,
and stiffeners. To aid the design of such programmable deformation, this paper describes a
computational method, exploiting the fact that the prescribed voltage sets the nominal electric field.
The method is demonstrated with examples including formation of wrinkles, movements of a
handlike actuator, and nonlinear oscillation of a balloon. © 2008 American Institute of Physics.
�DOI: 10.1063/1.3054159�

Intense effort is being made to develop dielectric elas-
tomers for applications such as sensors, actuators, and
generators.1–3 The essential part of such a device is a layer of
a dielectric elastomer sandwiched between two compliant
electrodes. When a voltage is applied between the electrodes,
the layer reduces its thickness and expands its area. For the
layer to deform appreciably, the electric field needed is high,
on the order of 108 V /m. To avoid excessively high voltage
in use, the layer must be thin, typically below 1 mm.

Programmable deformation in three dimensions can
be achieved with patterned prestretches, electrodes, and
stiffeners.1–3 Existing computational methods, however,
have only been demonstrated for relatively simple
configurations.4–11 This paper describes a method that can
be embedded in a commercial finite element software.
Consequently, the method can be widely used to explore di-
electric elastomer devices of complicated configurations and
functions.

Our method is based on a general theory of elastic
dielectrics.12–17 The synopsis here closely follows Ref. 17.
When an elastic dielectric deforms from a reference state to a
current state at time t, a material particle of coordinate X in
the reference state moves to a place of coordinate x�X , t� in
the current state. The deformation gradient is

FiK =
�xi�X,t�

�XK
. �1�

The nominal electric field is

ẼK = −
���X,t�

�XK
, �2�

where ��X , t� is the electrical potential of the material par-
ticle X in the current state.

Let B�X , t�dV�X� be the applied force on an element of
volume, T�X , t�dA�X� the applied force on an element of
surface, ��X�dV�X� the mass of the element of volume,
Q�X , t�dV�X� the charge on the element of volume, and
��X , t�dA�X� the charge on the element of surface. The elas-
tic dielectric is held at a fixed temperature, so that the ther-
modynamic state of an element of volume is characterized by

a free-energy function, Ŵ�F , Ẽ�. Every element of the body
is in a state of local thermodynamic equilibrium if

� �Ŵ

�FiK

��i

�XK
dV =� �Bi − �

�2xi

�t2 ��idV +� Ti�idA �3�

holds for arbitrary function �i�X� and if

� �Ŵ

�ẼK

��

�XK
dV =� Q�dV +� ��dA �4�

holds for arbitrary function ��X�. The integrals extend over
the volume and surface of the body, respectively.

Equations �1�–�4� define an initial-value problem that
yields the fields x�X , t� and ��X , t�. The following data need
to be prescribed: the fields of displacement, velocity, and
electric potential at an initial time, the applied forces B�X , t�
and T�X , t�, the electric charges Q�X , t� and ��X , t�, the

mass density ��X�, and the free-energy function Ŵ�F , Ẽ�.
Also prescribed are the displacement and voltage on parts of
the boundary.

We now specialize the general theory to a form suitable
for thin layers. The layer is taken to be free of extrinsic
charges, so that Q=0 everywhere and �=0 on the surfaces
of the layer uncovered by electrodes. More than one pair of
electrodes may be patterned on the layer in order to program
complex sequences of deformation. The lateral size of each
electrode is large compared to the thickness of the layer, such
that the fringe field at the edges of the electrodes can be
neglected so far as the overall deformation is concerned. The
electric field can also be neglected in part of the layer un-
covered by the electrodes. The nominal electric field in the
layer between a pair of electrodes is

Ẽ =
�

H
N , �5�

where � is the voltage applied between the electrodes in the
current state, H is the thickness of the layer in the reference
state, and N is the unit vector normal to the layer in the
reference state. The direction of N is fixed if the layer in the
reference state is planar but varies if the layer in the refer-
ence state is curved. In both cases, the prescribed voltage sets
the nominal electric field.a�Electronic mail: suo@seas.harvard.edu.
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For the layer Eq. �2� is replaced by Eq. �5� to prescribe
the nominal electric field, and Eq. �4� is removed from the
list of governing equations. Consequently, Eqs. �1� and �3�
define the initial-value problem that yields the field x�X , t�.
The structure of this initial-value problem is identical to that
of an elastic body subject to mechanical loads alone. The
known nominal electric field �Eq. �5�� enters the problem

through the free-energy function Ŵ�F , Ẽ� in a form of an
eigenstrain.

We embed this method in the commercial finite element
software, ABAQUS, by coding the free-energy function

Ŵ�F , Ẽ� and its derivatives in a user-supplied subroutine,
UMAT. To illustrate the method, we adopt a model material,
called the ideal dielectric elastomer, with the free-energy
function,18

Ŵ�F,Ẽ� =
�

2
�FiKFiK − 2 log�det F� − 3� + K�det F − 1�2

−
�FiK

−1ẼKFiL
−1ẼL

2 det F
, �6�

where � is the shear modulus and � is the permittivity. Fol-
lowing a usual practice in computation, we use the second
term to approximately enforce incompressibility of the elas-
tomer, with the constant K set to be much greater than �.10

We verify our method by analyzing several simple con-
figurations �Fig. 1�, which have been analyzed by solving
algebraic equations or ordinary differential equations
�ODEs�.11,14,19,20 For a flat layer of an elastomer fully cov-
ered by electrodes on both faces, the deformation in the layer
is homogenous until the nominal electric field reaches a

peak, where the layer undergoes the electromechanical
instability.11 When we use the static option in this calcula-
tion, the method reproduces the analytic solution before the
instability but does not go beyond the instability. The situa-
tion is similar for the balloon subject to a pressure and a
voltage.14 For a flat layer partially covered by circular elec-
trodes and prestretched, our method reproduces the existing
results obtained by the ODE �Ref. 6� and goes beyond the
existing results when the layer loses tension, as discussed
below.

When the voltage-induced expansion in area is con-
strained by surrounding materials, the layer may form
wrinkles; Fig. 2�a� shows an example.21 We model a layer
patterned with elliptic electrodes, the ratio of the two axes
being A1 /A2=0.6. The layer is prestretched by �P=1.1 and is
then subject to a voltage. As the voltage increases, the region
with electrodes expands in all directions. The stress in the
direction of axis A2 becomes compressive, while the stress in
the direction of A1 is still tensile. Wrinkles form along the A2
direction, Fig. 2�b�. Our method may be used to examine the
effects of wrinkles on the operation of the devices.

A handlike actuator has been demonstrated recently.9 A
prestretched layer of a dielectric elastomer is first attached to
a frame cut from a thin foil of a polymer. When the external
constraint is removed, this planar structure self-assembles
into a three-dimensional shape. The structure opens when a
voltage is applied across the thickness of the elastomer and
closes when the voltage is withdrawn. The structure can be
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FIG. 3. �Color online� A handlike actuator �Ref. 9�. The thickness of the
frame is set to be equal to that of the dielectric elastomer, and the shear
modulus of the frame is set to be twice that of the dielectric elastomer.
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FIG. 1. �Color online� Several simple configurations: a flat layer fully cov-
ered by electrodes on both faces, a spherical balloon subject to a pressure
and a voltage, and a prestretched flat layer partially covered by circular
electrodes.
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FIG. 2. �Color online� A prestretched layer partially covered by elliptic
electrodes. Wrinkles form when the voltage exceeds a critical value
�Ref. 21�.
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used to pick and place objects. Figure 3�a� shows the simu-
lation of the self-assembly from a planar structure to a three-
dimensional one. We also simulate the structure as it opens,
closes, and lifts a weight by contact friction, Fig. 3�b�.

Once an oscillating voltage is applied across the skin of
a pressurized balloon, the balloon oscillates. The oscillation
is nonlinear when the amplitude of the voltage is large
enough, as shown in a previous study using an ODE.22 We
use this phenomenon to illustrate the capability of simulating
dynamic deformation. Figure 4�a� shows the applied oscillat-
ing voltage, and Fig. 4�b� shows the simulated oscillation of
the balloon. The balloon oscillates with the same frequency
as the input voltage. The amplitude of the oscillation, how-

ever, varies with another frequency. The results from our
simulation match perfectly with those from solving the ODE.

In summary, we have developed a method to simulate
programmable deformation of dielectric elastomer layers.
Our method, embedded in a commercial finite element soft-
ware, can be widely used to explore devices of complicated
configurations and functions.
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FIG. 4. �Color online� Nonlinear oscillation of a balloon subject to a sinu-
soidal voltage and a constant pressure.
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