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We develop a thermodynamic model of electrostriction for elastic dielectrics capable of large
deformation. The model reproduces the classical equations of state for dielectrics at small
deformation, but shows that some electrostrictive effects negligible at small deformation may
become pronounced at large deformation. The model is then specialized to account for recent
experiments with an elastomer, where the electric displacement is linear in the electric field when
the strain of the elastomer is held fixed, but the permittivity changes appreciably when the
strain changes. Our model couples this quasilinear dielectric behavior with nonlinear elastic
behavior. We explore the consequence of the model by deriving conditions under which the
deformation-dependent permittivity suppresses electromechanical instability. © 2008 American
Institute of Physics. �DOI: 10.1063/1.3031483�

I. INTRODUCTION

A dielectric deforms when subjected to a voltage.1–5 The
voltage may cause some dielectrics to become thinner, but
other dielectrics to become thicker �Fig. 1�. The voltage-
induced deformation is exploited in diverse applications, in-
cluding medical equipments, optical devices, energy harvest-
ers, and space robotics.6–9 While all dielectrics deform under
a voltage, the effect is particularly pronounced in soft mate-
rials, such as certain thermoplastic polymers10 and
elastomers.3,11–16 For example, subjected to a voltage a mem-
brane of an elastomer may enlarge many times its area.

For dielectrics that are nonpolar in the absence of elec-
tric field, the voltage-induced deformation has been analyzed
by invoking stresses of two origins: the electrostrictive stress
and the Maxwell stress. The electrostrictive stress results
from the effect of deformation on permittivity. Models of
electrostriction have long existed, but only for small
deformation.17,18 For large deformation, almost all existing
analyses have only used the Maxwell stress to account for
voltage-induced deformation.3,11–13,15,19,20 Maxwell21 derived
this field of stress in the vacuum to account for electrostatic
forces between rigid conductors. For example, for a parallel-
plate capacitor, with two oppositely charged electrodes sepa-
rated by a gap of vacuum, the Maxwell stress describes the
electrostatic attraction between the two electrodes.

The Maxwell stress is unable to account for dielectrics
that thicken under a voltage �Fig. 1�c��. Indeed, as we
pointed out in a previous paper,22 the Maxwell stress can
account for voltage-induced deformation only for a very spe-
cial type of materials, which we call the ideal dielectric elas-
tomers, where the permittivity is deformation independent.
The behavior of the ideal dielectric elastomers corresponds
to the following physical picture. An elastomer is a cross-
linked network of long and flexible polymers. When the de-
gree of cross-link is low and the deformation is well below
the extension limit, the molecular units in the polymers can
polarize as freely as in a polymeric liquid, so that the per-

mittivity is unaffected by the deformation. However, when
the degree of cross-link is not so low, or when the deforma-
tion approaches the extension limit, the permittivity of the
elastomer will be affected by the deformation. In fact, recent
experiments on an elastomer have shown that the permittiv-
ity varies by a factor of 2 at large deformation.15 Further-
more, there is no reason to assume deformation-independent
permittivity for future materials.14,23 In such cases, the Max-
well stress by itself is not expected to account for the
voltage-induced deformation.

This paper develops a thermodynamic model of electros-
triction at large deformation, on the basis of a nonlinear field
theory of elastic dielectrics; see Refs. 24–26 for reviews.
When the permittivity is deformation dependent, the model
shows that the Maxwell stress only contributes to part of the
voltage-induced deformation. The model reproduces the
classical equations of state for dielectrics at small deforma-
tion. To explore the practical consequence of the model, we
derive conditions under which the deformation-dependent
permittivity suppresses electromechanical instability.

II. WORK, FREE-ENERGY FUNCTION, AND
EQUATIONS OF STATE

To exhibit the essential behavior, we focus on a widely
used configuration: a membrane of an elastic dielectric sand-
wiched between two electrodes �Fig. 2�. In the undeformed
state, the membrane is of sides L1, L2, and L3. When the
dielectric is subject to mechanical forces F1, F2, and F3 in
the three directions, as well as an electric voltage � via an
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FIG. 1. �Color online� Consider �a� a dielectric that is nonpolar in the
absence of applied voltage. Subjected to a voltage, �b� some dielectrics
become thinner, but �c� other dielectrics become thicker.
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external circuit, the three sides deform to l1, l2, and l3, and an
amount of electric charge Q flows through the external cir-
cuit from one electrode to the other. The electrodes are so
compliant that they do not constrain the deformation of the
dielectric. We neglect the electrostatic energy associated with
the fringe field in the vacuum outside the dielectric, and as-
sume that the deformation and electric field inside the dielec-
tric are homogenous.

As noted in our previous paper,24 we emphasize that F1,
F2, and F3 are mechanical forces applied by external agents,
such as weights. We do not invoke the nebulous notion of
electric force. When the sides of the membrane change by
small amounts, �l1, �l2, and �l3, the mechanical forces do
works F1�l1, F2�l2, and F3�l3. Similarly, when a small
amount of charge �Q relocates from one electrode to the
other through the external circuit, the electric voltage does
work ��Q.

The dielectric is a thermodynamic system taken to be
held at a constant temperature. Denote the Helmholtz free
energy of the system by A. When the dielectric is in equilib-
rium with the applied forces and the applied voltage, associ-
ated with any small change in the sides and the induced
charge, any change in the Helmholtz free energy equals the
work done by the applied forces and the applied voltage,
namely,

�A = F1�l1 + F2�l2 + F3�l3 + ��Q . �1�

Divide Eq. �1� by the volume of the dielectric in the
reference state, L1L2L3, and we obtain that

�W = s1��1 + s2��2 + s3��3 + Ẽ�D̃ , �2�

where W=A / �L1L2L3� is the Helmholtz free-energy density;
s1=F1 / �L2L3�, s2=F2 / �L1L3�, and s3=F3 / �L1L2� are the
nominal stresses; �1= l1 /L1, �2= l2 /L2, and �3= l3 /L3 are the

stretches; Ẽ=� /L3 is the nominal electric field; and D̃
=Q / �L1L2� is the nominal electric displacement. It is evident
from Eq. �2� that the nominal stresses are work conjugate to
the stretches, and the nominal electric field is work conjugate
to the nominal electric displacement.

Following Refs. 22 and 24–28, as a material model
we stipulate that the free-energy density is a function
of the stretches and the nominal electric displacement,

W��1 ,�2 ,�3 , D̃�. Consequently, Eq. �2� dictates that the
nominal stresses and the nominal electric field be the partial
differential coefficients, namely,

s1 =
�W��1,�2,�3,D̃�

��1
, �3a�

s2 =
�W��1,�2,�3,D̃�

��2
, �3b�

s3 =
�W��1,�2,�3,D̃�

��3
, �3c�

Ẽ =
�W��1,�2,�3,D̃�

�D̃
. �3d�

Once the free-energy function W��1 ,�2 ,�3 , D̃� is known for
a given elastic dielectric, Eq. �3� constitutes the equations of
state.

Recall that the true stresses are defined as �1=F1 / l2l3,
�2=F2 / l3l1, and �3=F3 / l1l2, so that the true stresses relate to
the nominal stresses by �1=s1 / ��2�3�, �2=s2 / ��1�3�, and
�3=s3 / ��1�2�. Similarly, the true electric field is defined as
E=� / l3, so that the true electric field relates to the nominal

electric field by E= Ẽ /�3. Also, the true electric displacement
is defined as D=Q / �l1l2�, so that the true electric displace-
ment relates to the nominal electric displacement by D

= D̃ / ��1�2�.
While the nominal stress s1 is work conjugate to the

stretch �1, the true stress �1 is not. This statement is under-
stood as follows. The applied force F1 does work F1�l1. This
work can be written in terms of the nominal stress:

F1�l1 = �s1L2L3����1L1� = �L1L2L3��s1��1� . �4�

Thus, the product s1��1 is the work per unit volume, a fact
that leads to Eq. �3a�. By contrast, the same work F1�l1 can
also be written in terms of the true stress:

F1�l1 = ��1l2l3����1L1� = �L1l2l3���1��1� . �5�

Thus, the product �1��1 is not work per unit volume, and
�1��W /��1.

Analogously, as we noted in our previous paper,24 while

the nominal electric displacement D̃ is work conjugate to the

nominal electric field Ẽ, the true electric displacement D is
not work conjugate to the true electric field E. Recall that the
applied voltage � does work ��Q. This work can be written
in terms of the nominal quantities:

��Q = �ẼL3���D̃L1L2� = �L1L2L3��Ẽ�D̃� . �6�

Thus, the product Ẽ�D̃ is the work per unit volume, a fact
that leads to Eq. �3d�. By contrast, the same electric work
��Q can also be written in terms of the true quantities:
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FIG. 2. A membrane of an elastic dielectric is sandwiched between two
compliant electrodes. �a� Under no applied forces and voltage, the mem-
brane is of sides L1, L2, and L3. �b� Subject to mechanical forces F1, F2, and
F3 in three directions and to electrical voltage � via an external circuit, the
membrane deforms to l1, l2, and l3, and charge Q flows from one electrode
to the other through the external circuit.
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��Q = �El3���Dl1l2� = �l1l2l3��E�D� + ED�l3l1�l2

+ l3l2�l1� . �7�

Thus, the product E�D is not work per unit volume, and E
��W /�D.

The fact that the true quantities are not work conjugate
makes theoretical arguments using the true quantities often
appear very subtle, even when deformation is small, e.g., in
Refs. 17 and 18. As we will show later, such apparent subtle-
ties vanish when we use the nominal quantities. While the
merit of the nominal quantities is evident from the work-
conjugate relations in Eq. �3�, the true quantities seem to
appeal to most researchers. In this paper we compromise: we
will derive basic relations using the nominal quantities, and
then translate these relations in terms of the true quantities.

III. QUASILINEAR DIELECTRICS

When a dielectric sustains a large deformation and a
large electric displacement, the equations of state are nonlin-
ear. The general structure of the nonlinear equations of state
for elastic dielectrics has been reviewed recently.24–26 This
section considers a special type of dielectric behavior, which
we call quasilinear dielectric behavior, where the electric dis-
placement is linear in the electric field when the strain is held
fixed, but the permittivity may vary when the strain changes.
This quasilinear behavior seems to describe the experimental
observation of 3M’s VHB acrylic, the most widely studied
dielectric elastomer for actuators.15 The quasilinear dielec-
trics include ideal dielectric elastomers as a special case. For
the latter, the electric field is linear in the electric displace-
ment, but the permittivity is deformation independent. Fur-
thermore, as we will show below, the quasilinear dielectric
model naturally extends the model of small-strain electros-
triction widely used in the literature.17,18

To account for the quasilinear dielectric behavior, we

expand the free-energy function W��1 ,�2 ,�3 , D̃� into the

Taylor series in terms of D̃ up to the quadratic term:

W��1,�2,�3,D̃� = WS��1,�2,�3� +
1

2
���1,�2,�3�D̃2. �8�

The leading term WS��1 ,�2 ,�3� is the elastic energy in the
absence of the applied voltage. The material is taken to be

nonpolar, so that by symmetry the term linear in D̃ vanishes.
The coefficient of the quadratic term � is a function of the
stretches.

Inserting Eq. �8� into Eq. �3d�, we obtain that

Ẽ = �D̃ . �9�

This equation characterizes the quasilinear dielectric: the
electric field is linear in the electric displacement when the
stretches are held at any fixed levels. In terms of true quan-
tities, Eq. �9� becomes �3E=��1�2D. We recover the famil-
iar equation D=�E by identifying �=�3 / ��1�2��. In general,
the permittivity � is a function of the stretches, ���1 ,�2 ,�3�.

Using the permittivity, we rewrite Eq. �8� as

W��1,�2,�3,D̃� = WS��1,�2,�3� +
�1

−1�2
−1�3

2���1,�2,�3�
D̃2. �10�

Inserting Eq. �10� into Eq. �3�, we obtain that

s1 =
�WS

��1
−

1

2�
�1

−2�2
−1�3D̃2 −

1

2�2

��

��1
�1

−1�2
−1�3D̃2, �11a�

s2 =
�WS

��2
−

1

2�
�1

−1�2
−2�3D̃2 −

1

2�2

��

��2
�1

−1�2
−1�3D̃2, �11b�

s3 =
�WS

��3
+

1

2�
�1

−1�2
−1D̃2 −

1

2�2

��

��3
�1

−1�2
−1�3D̃2, �11c�

Ẽ =
1

�
�1

−1�2
−1�3D̃ . �11d�

In terms of the true quantities, Eq. �11� becomes

�1 = �2
−1�3

−1�WS

��1
−

�

2
E2 −

1

2

��

��1
�1E2, �12a�

�2 = �1
−1�3

−1�WS

��2
−

�

2
E2 −

1

2

��

��2
�2E2, �12b�

�3 = �1
−1�2

−1�WS

��3
+

�

2
E2 −

1

2

��

��3
�3E2, �12c�

D = �E . �12d�

Once the two functions WS��1 ,�2 ,�3� and ���1 ,�2 ,�3� are
known for a quasilinear dielectric, Eq. �12� constitutes the
equations of state. Equation �12d� recovers the familiar rela-
tion for a linear dielectric when the stretches are held fixed.
Equations �12a�–�12c� have a similar form. As an example,
we discuss Eq. �12c� in what follows. The first term in Eq.
�12c� is the stress due to elasticity and can be either tensile or
compressive. The second term is the Maxwell stress and is
always tensile in the direction of the electric field. The third
term is present when the permittivity varies with the stretch,
and can be either tensile or compressive. Observe that the
third term in Eq. �12c� also scales with �3, which differs
greatly from unity when the dielectric deforms substantially.
Consequently, some electrostrictive effect negligible at small
deformation may become significant at large deformation.

As noted before, the Maxwell stress can fully account
for the voltage-induced stress only when the permittivity is
independent of deformation. When the permittivity is defor-
mation dependent, the third term in Eq. �12c� can either add
to the tensile Maxwell stress when �� /��3�0, or reduce the
effect of the tensile Maxwell stress when �� /��3�0. Recall
that a voltage can cause some dielectrics to become thinner,
but other dielectrics to become thicker �Fig. 1�.

A few remarks on terminology may be helpful. In Eq.
�12c�, the contribution from the electric field separates into
two terms: one term scales with �, and the other scales with
�� /��3. It seems natural to call the former the Maxwell
stress, and the latter the electrostrictive stress. Such a sepa-
ration is possible only for quasilinear dielectrics, for which
the permittivity is defined. For a generally nonlinear dielec-
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tric, however, the equations of state are given by Eq. �3�, and
there may not be a natural way to single out part of the stress
and call it the Maxwell stress. In such a case, one may as
well call the whole voltage-induced deformation electrostric-
tion, and refrain from the temptation to divide the deforma-
tion in some artificial manner.

IV. SMALL-STRAIN APPROXIMATION

Past analyses of electrostriction have assumed small
deformation.17,18 The resulting equations of state are some-
times used without justification for elastomers at large
deformation.29,30 To contrast the equations of state at small
and large deformations, here we specialize our results for
large deformation to those for small deformation.

When deformation is small, all three stretches are close
to the unity, �i�1. Consequently, one can expand the func-
tion ���1 ,�2 ,�3� into the Taylor series up to terms linear in
��i−1�, namely,

� = �̄�1 + a��3 − 1� + b��1 + �2 + �3 − 3�� , �13�

where �̄ is the permittivity of the dielectric in the absence of
deformation, and a and b are the coefficients of
electrostriction.17,18 In writing Eq. �13�, we have assumed
that the dielectric is isotropic. When the electric field is ap-
plied in direction 3, by symmetry, the coefficient of electros-
triction is the same in directions 1 and 2, but is different in
direction 3.

Inserting Eq. �13� into Eq. �12�, we obtain that

�1 = �2
−1�3

−1�WS

��1
−

1

2
�̄�1 + a��3 − 1� + b�2�1 + �2 + �3

− 3��E2, �14a�

�2 = �1
−1�3

−1�WS

��2
−

1

2
�̄�1 + a��3 − 1� + b��1 + 2�2 + �3

− 3��E2, �14b�

�3 = �1
−1�2

−1�WS

��3
+

1

2
�̄�1 − a + b��1 + �2 − 3��E2, �14c�

D = �̄�1 + a��3 − 1� + b��1 + �2 + �3 − 3��E . �14d�

In the small-strain approximation, �i−1 are small compared
to the unity, and the coefficients of electrostriction, a and b,
are assumed to be of order unity, so that Eq. �14� becomes

�1 =
�WS

��1
−

1

2
�̄�1 + b�E2, �15a�

�2 =
�WS

��2
−

1

2
�̄�1 + b�E2, �15b�

�3 =
�WS

��3
+

1

2
�̄�1 − a − b�E2. �15c�

D = �̄E . �15d�

Equations �15a�–�15d� agree with the classical results in
Refs. 17 and 18. This agreement is not accidental. Although
the derivations of the existing model take a different ap-
proach from ours, both derivations are based on the same
assumption: quasilinear dielectrics at small deformation. The
classical results, however, are restricted to small deforma-
tion. At large deformation, one should use more general
equations of state, Eq. �3� and �12�.

V. INCOMPRESSIBLE ELASTIC DIELECTRICS

When an elastomer deforms, the change in shape is usu-
ally much more pronounced than the change in volume. Con-
sequently, it is a common practice to assume that the elas-
tomer is incompressible. This section derives the equations
of state for incompressible, quasilinear dielectrics.

The condition of incompressibility places a constraint
among the three stretches, �1�2�3=1, so that when the mem-
brane deforms, the change ��3 relates to the changes ��1 and
��2 as

��3 = −
��1

�1
2�2

−
��2

�2
2�1

. �16�

Consequently, Eq. �2� becomes

�W = �s1 −
s3

�1
2�2

���1 + �s2 −
s3

�2
2�1

���2 + Ẽ�D̃ . �17�

As a material model, we stipulate that the free-energy
density is a function of the two in-plane stretches and the

nominal electric displacement, W��1 ,�2 , D̃�, so that Eq. �17�
implies that

s1 −
s3

�1
2�2

=
�W��1,�2,D̃�

��1
, �18a�

s2 −
s3

�2
2�1

=
�W��1,�2,D̃�

��2
, �18b�

Ẽ =
�W��1,�2,D̃�

�D̃
. �18c�

Once the free-energy function W��1 ,�2 , D̃� is known for an
incompressible elastic dielectric, Eq. �18� constitutes the
equations of state.

For an incompressible, quasilinear dielectric, the free-
energy function is specialized from Eq. �10� and takes the
form

W��1,�2,D̃� = WS��1,�2� +
�1

−2�2
−2

2���1,�2�
D̃2. �19�

As indicated, both the elastic energy density WS and the per-
mittivity � are functions of the two in-plane stretches. Insert-
ing Eq. �19� into Eq. �18�, we obtain that
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s1 −
s3

�1
2�2

=
�WS

��1
−

1

�
�1

−3�2
−2D̃2 −

1

2�2

��

��1
�1

−2�2
−2D̃2,

�20a�

s2 −
s3

�2
2�1

=
�WS

��2
−

1

�
�1

−2�2
−3D̃2 −

1

2�2

��

��2
�1

−2�2
−2D̃2,

�20b�

Ẽ =
�1

−2�2
−2

�
D̃ . �20c�

In terms of true quantities, Eq. �20� becomes

�1 − �3 = �1
�WS

��1
− �E2 −

1

2

��

��1
�1E2, �21a�

�2 − �3 = �2
�WS

��2
− �E2 −

1

2

��

��2
�2E2, �21b�

D = �E . �21c�

Once the two functions WS��1 ,�2� and ���1 ,�2� are known
for an incompressible, quasilinear dielectric, Eq. �21� consti-
tutes the equations of state.

In recent experiments, Wissler and Mazza15 stretched
membranes of a VHB elastomer by an equal amount in the
two in-plane directions, and measured the permittivity as a
function of the stretch. As shown in Fig. 3, we fit their ex-
perimental data to the following function:

���1,�2� = �̄�1 + c��1 + �2 − 2�� , �22�

with c=−0.053 and �̄=4.68�0, where �0=8.85	10−12 F /m
is the permittivity of the vacuum.

By substituting Eq. �22� into Eq. �21�, we obtain that

�1 − �3 = − �̄�1 + c�3

2
�1 + �2 − 2�	E2, �23a�

�2 − �3 = − �̄�1 + c��1 +
3

2
�2 − 2�	E2. �23b�

In writing Eq. �23�, we have only retained the contributions
due to the electric field, and dropped those due to elasticity.

Equation �23a� is plotted in Fig. 4 using the experimental
value of the coefficient of electrostriction, c=−0.053. For
comparison, Fig. 4 also includes several expressions some-
times used in the literature: the Maxwell stress with constant
permittivity,3,11–13,15,19,20 −�̄E2; the Maxwell stress with vary-
ing permittivity,15 −�̄�1+c��1+�2−2��E2; and electrical
stress from small-strain electrostriction,29,30 −�̄�1+c /2�E2.
At small deformation ��1=�2�1�, the electrical stresses of
other forms are close to the prediction of our model. How-
ever, as deformation increases, the electrical stresses of all
the other expressions significantly deviate from our predic-
tion. At �1=�2=6, the deviation of the Maxwell stress with
constant permittivity and small-strain electrostriction is

70%, and the deviation of the Maxwell stress with varying
permittivity is more than 30%. Dielectric elastomer usually
works at a prestretched state ��1 ,�2=3–6�, and gives a very
high actuation strain �over 100%�. The large deformation
may cause significant errors in almost all previous models on
dielectric elastomers.

VI. ELECTROMECHANICAL INSTABILITY

Subjected to a voltage, a dielectric elastomer reduces its
thickness, so that the voltage induces a high electric field.
The positive feedback between the electric field and the
thickness may cause the elastomer to thin down drastically,
resulting in an electrical breakdown. This electromechanical
instability was first described by Stark and Garton,15 and has
been studied for ideal dielectric elastomers.22,27,31 In this sec-
tion, we examine the effect of deformation-dependent per-
mittivity on the electromechanical instability, using a method
developed in Refs. 22 and 27.

We will consider the case where the elastomer is sub-
jected to no mechanical force, s1=s2=s3=0, and is subjected
to a voltage. By symmetry, the two in-plane stretches are
equal, which we denote as �1=�2=�. Due to incompressibil-
ity, the stretch in the direction of thickness is given by �3

=�−2. We write the free-energy function as
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λ1 = λ2

ε/
ε 0

Experiment 15

Model

ε = ε̄[1 + c(λ1 + λ2 − 2)]

ε̄ = 4.68ε0, c = −0.053

FIG. 3. Experimentally measured permittivity as a function of deformation
�Ref. 15�. The experimental data are fitted to a straight line.
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FIG. 4. �Color online� Comparison of stresses calculated using various
methods. Only the voltage-induced stresses are plotted.
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W��,D̃� =



2
�2�2 + �−4 − 3� +

�−4D̃2

2�̄�1 + 2c�� − 1��
. �24�

In writing Eq. �24�, we have used deformation-dependent
permittivity �22�, and assumed that the elastomer is a net-
work of long and flexible polymers obeying the Gaussian
statistics, with 
 being the shear modulus.32 As the results
below will indicate, when the electromechanical instability
does occur, the critical stretch is modest. For such a modest
level of stretch, the Gaussian statistics is expected to describe
the elasticity of the elastomer adequately.

Equation �20c� becomes

Ẽ

�
/�̄
=

�−4

1 + 2c�� − 1�
D̃

��̄

. �25�

In the absence of the applied force, the voltage causes the
elastomer to expand in the plane, so that � also depends on

D̃, and Ẽ is no longer linear in D̃. Indeed, the electrome-

chanical instability sets in when the function Ẽ�D̃� reaches
maximum.15

We next construct the nonlinear function Ẽ�D̃�. The con-

dition s1�� , D̃�=0 implies that �W�� , D̃� /��=0. Inserting Eq.

�24� into �W�� , D̃� /��=0, we obtain that

D̃

��̄

=

2��6 − 1��1 + 2c�� − 1��
2 + c��1 + 2c�� − 1��−1 . �26�

We can regard the stretch � as the independent variable, and

calculate D̃ from Eq. �26�, and then calculate Ẽ from Eq.
�25�.

Figure 5 plots Eqs. �25� and �26� in several ways, using
various values of the coefficient of electrostriction, c. The
critical points for electromechanical instability are marked

by crosses. For c=0, the permittivity is independent of de-
formation, and the results recover those for the ideal dielec-
tric elastomers.27 For c=−0.053, the nominal electric field
reaches peak at the stretch ��1.28. For c=1, the nominal
electric field reaches peak at a smaller stretch, ��1.18.

When c�0, the effect of deformation-dependent permit-
tivity partially removes the Maxwell stress. Consequently, a
sufficiently negative coefficient of electrostriction, c, will
suppress electromechanical instability. When c=−10, for ex-
ample, the elastomer becomes thicker under applied voltage,
a fact that eliminates the positive feedback between the true
electric field and the thickness, so that the dielectric is elec-
tromechanically stable. When c=−0.25, even though the
elastomer becomes thinner with the applied voltage, the
deformation-dependent permittivity can still suppress elec-
tromechanical instability.

In addition to the electromechanical instability, the elas-
tomer may also fail by electrical breakdown. Figure 5�c�
shows that the true electric field E is a monotonic function of

D̃. The true electric field is useful in estimating the condition
of electrical breakdown.

Figure 6 plots the critical conditions for electromechani-

cal instability �Ẽc, Ec, and �c� as a function of the coefficient
of electrostriction, c. As c decreases, the critical values of the
true electric field, nominal electrical field, and stretch all in-
crease. When c�−0.23, electromechanical instability is sup-
pressed.

VII. CONCLUDING REMARKS

Models of electrostriction have long existed, but only for
small deformation. This paper develops a model of electros-
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Ẽ
�

�/
µ

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

D̃/
√

�µ

E
�

�/
µ −0.053

0

1

c=−0.25

−10

c=−10
−0.25 c=−10 −0.25

−0.053

1
1

−0.053

0 0

(a)

(b)

(c)

FIG. 5. �Color online� Behaviors of dielectric elastomers for various values
of the coefficient of electrostriction. �a� Nominal electric field vs nominal
electric displacement, �b� true electric field vs nominal electric displace-
ment, and �c� nominal electric field vs actuation stretch. The critical points
for electromechanical instability are marked by crosses.
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triction that is consistent with thermodynamics at large de-
formation. Motivated by recent experiments on dielectric
elastomers, our model couples nonlinear elastic behavior and
quasilinear dielectric behavior. The model shows that elec-
trostrictive effects negligible at small deformation may be-
come pronounced at large deformation. Based on experimen-
tally determined permittivity-stretch function for VHB, we
calculate the voltage-induced stress using several available
models. We show that the stress predicted by the previous
models markedly deviate from that predicted by the present
model. Our model also has implications for designing new
materials. For example, we derive conditions under which
the deformation-dependent permittivity suppresses electro-
mechanical instability. McMeeking and Landis26 showed that
the general theory of large deformation in elastic dielectrics
can be reduced to that of small deformation in electrostric-
tive materials given in Landau and Lifshitz.18 McMeeking
and Landis also described an example in which deformation-
dependent permittivity affects stress.
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